scholarly journals Amino Acid-Based Natural Deep Eutectic Solvents for Extraction of Phenolic Compounds from Aqueous Environments

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1716
Author(s):  
Meiyu Li ◽  
Yize Liu ◽  
Fanjie Hu ◽  
Hongwei Ren ◽  
Erhong Duan

The environmental pollution of phenol-containing wastewater is an urgent problem with industrial development. Natural deep eutectic solvents provide an environmentally friendly alternation for the solvent extraction of phenol. This study synthesized a series of natural deep eutectic solvents with L-proline and decanoic acid as precursors, characterized by in situ infrared spectrometry, Fourier transform infrared spectrometry, hydrogen nuclear magnetic resonance spectrometry, and differential thermogravimetric analysis. Natural deep eutectic solvents have good thermal stability. The high-efficiency extraction of phenol from wastewater by natural deep eutectic solvents was investigated under mild conditions. The effects of natural deep eutectic solvents, phenol concentration, reaction temperature, and reaction time on phenol extraction were studied. The optimized extraction conditions of phenol with L-prolin/decanoic acid were as follows: molar ratio, 4.2:1; reaction time, 60 min; and temperature, 50 °C. Extraction efficiency was up to 62%. The number of extraction cycles can be up to 6, and extraction rate not less than 57%. The promising results demonstrate that natural deep eutectic solvents are efficient in the field of phenolic compound extraction in wastewater.

2021 ◽  
Author(s):  
Zhijun Hu ◽  
Xinyu Cao ◽  
Guanhong Huang ◽  
Daliang Guo

Abstract Here, a new pretreatment method has been developed to produce CNFs from micro-fibrillated cellulose (MFC) by supercritical CO 2 pretreatment followed with ball-milling (SCB). MFC was obtained from cotton stalk by chemical purification.Experimental factors were controlled to enhance the properties of SCB-CNF, meanwhile a comparative study was conducted with the method of TEMPO oxidation and microfluid homogenization (TMH). Compared to TMH-CNF, the SCB-CNF has such advantages as Energy saving, high efficiency and environmental protection, indicating a wide application in heat-resistant materials, load materials and other fields. The solid yields of P-MFC after supercritical CO 2 pretreatment gradually decreased together with the temperature and the reaction time. Scanning electron microscope (SEM) images of the SCB-CNF and TMH-CNF show that the morphology of the SCB-CNF was basically acicular but that of the TMH-CNF was mainly soft fibrous. The SCB-CNF is smaller in width and shorter in length, and its size is between CNC and CNF. Thermal gravimetric results suggest that the thermal stability of the SCB-CNF was substantially higher than those of the TMH-CNF. XRD results indicate that the crystallinity showed an initial increasing trend and then declined with increasing temperature and reaction time, and the crystallinity value of SCB-CNF was larger than that of CNFs. The smaller SCB-CNF became rougher and had a larger surface area. High crystallinity make good thermal stability, short and coarse fiber, easier to disperse than CNF, less energy consumption for dispersion, better than 3D mesh. It can be widely used in polymer composites, reinforcing agents, membrane materials and other fields.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4736
Author(s):  
Sylwia Bajkacz ◽  
Kornelia Rusin ◽  
Anna Wolny ◽  
Jakub Adamek ◽  
Karol Erfurt ◽  
...  

A novel, efficient extraction procedure based on natural deep eutectic solvents (NADES) and ionic liquids (ILs) for determination of 20-hydroxyecdysone (20-E) in spinach has been developed. NADES, the first green extraction agent, with different hydrogen bond donors and acceptors are screened in order to determine extraction efficiencies. NADES consisting of lactic acid and levulinic acid at a molar ratio of 1:1 exhibits the highest yields. ILs, the second green extraction agent, with various cations and anions are also investigated, where [TEA] [OAc]·AcOH, χAcOH = 0.75 displays the highest recovery. Moreover, NADES-SLE and IL-SLE (SLE, solid-liquid extraction) parameters are investigated. Using the obtained optimized method, the recoveries of the target compound in spinach are above 93% and 88% for NADES-SLE and IL-SLE procedure, respectively. The methods display good linearity within the range of 0.5–30 μg/g and LODs of 0.17 µg/g. The proposed NADES-SLE-UHPLC-UV and IL-SLE-UHPLC-UV procedures can be applied to the analysis of 20-E in real spinach samples, making it a potentially promising technique for food matrix. The main advantage of this study is the superior efficiency of the new, green extraction solvents, which results in a significant reduction of extraction time and solvents as compared to those in the literature.


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 587 ◽  
Author(s):  
Lihui Wang ◽  
Xinlong Liu ◽  
Yanjun Jiang ◽  
Liya Zhou ◽  
Li Ma ◽  
...  

Biodiesel is a promising renewable energy source that can replace fossil fuel, but its production is limited by a lack of high-efficiency catalysts for mass production and popularization. In this study, we developed a biocatalytic Pickering emulsion using multiwall carbon nanotube-immobilized Candida antarctica lipase B (CALB@PE) to produce biodiesel, with J. curcas L. seed oil and methanol as substrates. The morphology of CALB@PE was characterized in detail. A central composite design of the response surface methodology (CCD-RSM) was used to study the effects of the parameters on biodiesel yield, namely the amount of J. curcas L. seed oil (1.5 g), molar ratio of methanol to oil (1:1–7:1), CALB@PE dosage (20–140 mg), temperature (30–50 °C), and reaction time (0–24 h). The experimental responses were fitted with a quadratic polynomial equation, and the optimum reaction conditions were the methanol/oil molar ratio of 4.64:1, CALB@PE dosage of 106.87 mg, and temperature of 34.9 °C, with a reaction time of 11.06 h. A yield of 95.2%, which was basically consistent with the predicted value of 95.53%, was obtained. CALB@PE could be reused up to 10 times without a substantial loss of activity. CALB@PE exhibited better reusability than that of Novozym 435 in the process of biodiesel production.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2079
Author(s):  
Gui-Ya Yang ◽  
Jun-Na Song ◽  
Ya-Qing Chang ◽  
Lei Wang ◽  
Yu-Guang Zheng ◽  
...  

In the present study, a simple and environmentally friendly extraction method based on natural deep eutectic solvents (NADESs) was established to extract four bioactive steroidal saponins from Dioscoreae Nipponicae Rhizoma (DNR). A total of twenty-one types of choline chloride, betaine, and L-proline based NADESs were tailored, and the NADES composed of 1:1 molar ratio of choline chloride and malonic acid showed the best extraction efficiency for the four steroidal saponins compared with other NADESs. Then, the extraction parameters for extraction of steroidal saponins by selected tailor-made NADES were optimized using response surface methodology and the optimal extraction conditions are extraction time, 23.5 min; liquid–solid ratio, 57.5 mL/g; and water content, 54%. The microstructure of the DNR powder before and after ultrasonic extraction by conventional solvents (water and methanol) and the selected NADES were observed using field emission scanning electron microscope. In addition, the four steroidal saponins were recovered from NADESs by D101 macroporous resin with a satisfactory recovery yield between 67.27% and 79.90%. The present research demonstrates that NADESs are a suitable green media for the extraction of the bioactive steroidal saponins from DNR, and have a great potential as possible alternatives to organic solvents for efficiently extracting bioactive compounds from natural products.


2021 ◽  
Vol 21 (4) ◽  
pp. 806
Author(s):  
Orchidea Rachmaniah ◽  
Muhammad Rifqy Muhsin ◽  
Angga Widya Putra ◽  
Muhammad Rachimoellah

Curcuminoids can be successfully extracted from Curcuma zedoaria using natural deep eutectic solvents (NADES) as extraction solvents. However, a mixture of extracted curcuminoids, NADES, and impurities from C. zedoaria was obtained as a slurry at the end of the extraction process. Therefore, further separation and purification were required to obtain the extracted compound in high purity. Herein, two purification methods based on classical column chromatography (CCC) and solid-phase extraction (SPE), were evaluated for the purification of curcuminoids from NADES matrices after extraction. Choline chloride–malic acid–water (CCMA–H2O) and choline chloride–citric acid–water (CCCA–H2O) in the molar ratio of 1:1:18 were selected as NADES matrices due to their high solubility and stabilization capability for curcuminoids. Ethanol-conditioned silica gel (60–200 µm) was applied as the bed resin for CCC, and a C18 cartridge was used for SPE. Acetonitrile/0.1% acetic acid, water/0.1% acetic acid, and iso-propanol/0.1% acetic acid were used as mobile phases for CCC. For SPE, methanol/0.05% acetic acid and water/0.05% acetic acid were applied in the conditioning step, water/0.05% acetic acid in the washing step, and methanol/acetonitrile (1:1) in the eluting step. The SPE method produced higher recovery of curcuminoids from the CCCA–H2O and CCMA–H2O matrices (75.27% and 73.40%, respectively) compared to CCC (51.9% and 61.0%, respectively). After removing the NADES constituents from the crude extract of curcuminoids, recrystallization was attempted.


2021 ◽  
Vol 11 (6) ◽  
pp. 14620-14633

Turmeric contains curcumin as one of the active constituents, which gives yellow color and possesses lots of pharmacological actions. Even though curcumin has lots of pharmacological actions till now, it has not been approved as a medicine due to its low water solubility, permeability, and poor bioavailability. Deep eutectic solvent (DES) can be prepared by simply mixing two or more solid components, [among the two one is hydrogen bond donor (HBD) and another is hydrogen bond acceptor (HBA)] at a definite molar ratio where the solid components by self-association converted into a liquid at room temperature (RT). Natural deep eutectic solvents (NADES) are a specific subgroup of DES containing primary plant-based metabolites such as organic acids, alcohols, amino acids, or sugars. In this work, natural hydrophobic DESs were prepared with Camphor, Menthol, and Thymol. This was prepared from different ratios of Menthol:Thymol 1:1 to 1:5 and 1:1 to 5:1 (MT-DES); Camphor:Thymol 1:1 to 1:5 and 1:1 to 5:1 (CT-NADES); Camphor:Menthol 1:1 to 1:5 and 1:1 to 2:1 (CM-NADES). The pH and viscosity of prepared DESs were determined with the help of a digital pH meter and Brookfield viscometer. The solubility of curcumin in different NADESs was determined at room temperature (RT) to higher temperatures. The formation of different clear DES was obtained with slight heat. There was no difference in pH for the NADESs prepared without and with heat. Regarding the viscosity CM-DES (1:1) showed less viscosity when compared to other NADESs. The solubility of curcumin was found to be nearly double when it was dissolved in NADES for 1 hr at 35-40°C compared to 48 h stirring at 500 rotations per minute (rpm) at RT. Among different NADESs, curcumin solubility was found to be more in CM (1:1) ratio when compared to other NADESs.


Planta Medica ◽  
2022 ◽  
Author(s):  
Elodie Bossard ◽  
Nikolaos Tsafantakis ◽  
Nektarios Aligiannis ◽  
Nikolas Fokialakis

Natural hydroxynaphthoquinone enantiomers (HNQs) are well-described pharmaceutical and cosmeceutical agents especially present in the roots of Alkanna tinctoria (L.) Tausch, a species native to the Mediterranean region. In this work, eco-friendly natural deep eutectic solvents (NaDESs) were developed for the selective extraction of these compounds. An extensive screening was performed using more than sixty tailor-made NaDESs. The impact of the intrinsic physicochemical properties on the HNQs extraction efficiency as well as the specificity towards the different enantiomeric pairs was thoroughly investigated. As a result of a multivariate analysis and of the one factor-a-time solvent optimization, the eutectic mixture composed of levulinic acid and glucose (LeG) using a molar ratio of 5:1 (molHBA:molHBD) and 20% of water (w/w) was found as the most appropriate mixture for the highest extraction efficiency of HNQs. Further optimization of the extraction process was attained by response surface methodology, using a temperature of 45 °C, a solid-to-liquid ratio of 30 mg/mL, and an extraction time of 50 min. A maximum extraction output of 41.72 ± 1.04 mg/g was reached for HNQs, comparable to that of the commonly used organic solvents. A solid-phase extraction step was also proposed for the recovery of HNQs and for NaDESs recycling. Our results revealed NaDESs as a highly customizable class of green solvents with remarkable capabilities for the extraction of HNQs.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ana Bjelić ◽  
Brigita Hočevar ◽  
Miha Grilc ◽  
Uroš Novak ◽  
Blaž Likozar

AbstractConventional biorefinery processes are complex, engineered and energy-intensive, where biomass fractionation, a key functional step for the production of biomass-derived chemical substances, demands industrial organic solvents and harsh, environmentally harmful reaction conditions. There is a timely, clear and unmet economic need for a systematic, robust and affordable conversion method technology to become greener, sustainable and cost-effective. In this perspective, deep eutectic solvents (DESs) have been envisaged as the most advanced novel polar liquids that are entirely made of natural, molecular compounds that are capable of an association via hydrogen bonding interactions. DES has quickly emerged in various application functions thanks to a formulations’ simple preparation. These molecules themselves are biobased, renewable, biodegradable and eco-friendly. The present experimental review is providing the state of the art topical overview of trends regarding the employment of DESs in investigated biorefinery-related techniques. This review covers DESs for lignocellulosic component isolation, applications as (co)catalysts and their functionality range in biocatalysis. Furthermore, a special section of the DESs recyclability is included. For DESs to unlock numerous new (reactive) possibilities in future biorefineries, the critical estimation of its complexity in the reaction, separation, or fractionation medium should be addressed more in future studies.


Sign in / Sign up

Export Citation Format

Share Document