scholarly journals Purification of Curcuminoids from Natural Deep Eutectic Solvents (NADES) Matrices Using Chromatography-Based Separation Methods

2021 ◽  
Vol 21 (4) ◽  
pp. 806
Author(s):  
Orchidea Rachmaniah ◽  
Muhammad Rifqy Muhsin ◽  
Angga Widya Putra ◽  
Muhammad Rachimoellah

Curcuminoids can be successfully extracted from Curcuma zedoaria using natural deep eutectic solvents (NADES) as extraction solvents. However, a mixture of extracted curcuminoids, NADES, and impurities from C. zedoaria was obtained as a slurry at the end of the extraction process. Therefore, further separation and purification were required to obtain the extracted compound in high purity. Herein, two purification methods based on classical column chromatography (CCC) and solid-phase extraction (SPE), were evaluated for the purification of curcuminoids from NADES matrices after extraction. Choline chloride–malic acid–water (CCMA–H2O) and choline chloride–citric acid–water (CCCA–H2O) in the molar ratio of 1:1:18 were selected as NADES matrices due to their high solubility and stabilization capability for curcuminoids. Ethanol-conditioned silica gel (60–200 µm) was applied as the bed resin for CCC, and a C18 cartridge was used for SPE. Acetonitrile/0.1% acetic acid, water/0.1% acetic acid, and iso-propanol/0.1% acetic acid were used as mobile phases for CCC. For SPE, methanol/0.05% acetic acid and water/0.05% acetic acid were applied in the conditioning step, water/0.05% acetic acid in the washing step, and methanol/acetonitrile (1:1) in the eluting step. The SPE method produced higher recovery of curcuminoids from the CCCA–H2O and CCMA–H2O matrices (75.27% and 73.40%, respectively) compared to CCC (51.9% and 61.0%, respectively). After removing the NADES constituents from the crude extract of curcuminoids, recrystallization was attempted.

Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3216 ◽  
Author(s):  
Sylwia Bajkacz ◽  
Jakub Adamek ◽  
Anna Sobska

This work aimed to comprehensively evaluate the potential and effectiveness of deep eutectic solvents (DESs) in the extraction of seven catechins from various tea samples. Different combinations of DES were used, consisting of Girard’s reagent T (GrT) in various mixing ratios with organic acids and choline chloride. The yields of the DES extractions were compared with those from ionic liquids and conventional solvent. DES contained malic acid, as the hydrogen bond donors showed a good solubility of catechins with different polarities. In the second part of the study, a solid-phase extraction (SPE) method was applied to the extraction of catechins from tea infusions. The method was applied to the determination of selected catechins in tea leaves and tea infusions. Furthermore, we demonstrated that the proposed procedure works well in the simultaneous monitoring of these polyphenols, which makes it a useful tool in the quality control of tea.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2079
Author(s):  
Gui-Ya Yang ◽  
Jun-Na Song ◽  
Ya-Qing Chang ◽  
Lei Wang ◽  
Yu-Guang Zheng ◽  
...  

In the present study, a simple and environmentally friendly extraction method based on natural deep eutectic solvents (NADESs) was established to extract four bioactive steroidal saponins from Dioscoreae Nipponicae Rhizoma (DNR). A total of twenty-one types of choline chloride, betaine, and L-proline based NADESs were tailored, and the NADES composed of 1:1 molar ratio of choline chloride and malonic acid showed the best extraction efficiency for the four steroidal saponins compared with other NADESs. Then, the extraction parameters for extraction of steroidal saponins by selected tailor-made NADES were optimized using response surface methodology and the optimal extraction conditions are extraction time, 23.5 min; liquid–solid ratio, 57.5 mL/g; and water content, 54%. The microstructure of the DNR powder before and after ultrasonic extraction by conventional solvents (water and methanol) and the selected NADES were observed using field emission scanning electron microscope. In addition, the four steroidal saponins were recovered from NADESs by D101 macroporous resin with a satisfactory recovery yield between 67.27% and 79.90%. The present research demonstrates that NADESs are a suitable green media for the extraction of the bioactive steroidal saponins from DNR, and have a great potential as possible alternatives to organic solvents for efficiently extracting bioactive compounds from natural products.


2022 ◽  
Vol 52 (1) ◽  
pp. 27-33
Author(s):  
Naciye Kutlu ◽  
Merve Sılanur Yılmaz ◽  
Gizem Melissa Erdem ◽  
Ozge Sakiyan ◽  
Aslı Isci

In this study, deep eutectic solvents (DESs) were prepared using choline-chloride as the hydrogen-bond acceptor and glycerol, formic acid and acetic acid as the hydrogen-bond donor. The effect of different process parameters such as molar ratio (1:2, 1:3 and 1:4), water content (15%, 30% and 45%), temperature (25, 50 and 75 °C) and frequency on dielectric properties of the DESs were examined. In conclusion, the highest dielectric constant value was detected at 25 °C for all DESs. Moreover, for all DESs, it was found that a decrease in water content resulted in a decrease in both dielectric constant and loss factor values. This can be explained by the absence of free water molecules which are responsible from dipole rotation mechanism. In light of the results, if DES will be used in microwave extraction, formic or acetic acid containing DESs might give more successful results compared to the one with glycerol.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1310
Author(s):  
Ping Yu ◽  
Qian Li ◽  
Yanmei Feng ◽  
Sinan Ma ◽  
Yuying Chen ◽  
...  

Deep eutectic solvents (DESs) are green organic solvents that have broad prospects in the extraction of effective components of traditional Chinese medicine. This work employed the quantitative analysis of multi-components by a single marker (QAMS) method to quantitatively determine the six effective components of glycyrrhizic acid, liquiritin, isoliquiritin apioside, liquiritigenin, isoliquiritin, and glycyrrhetinic acid in Glycyrrhiza uralensis, which was used for comprehensive evaluation of the optimal extraction process by DESs. First, Choline Chloride: Lactic Acid (ChCl-LA, molar ratio 1:1) was selected as the most suitable DES by comparing the extraction yields of different DESs. Second, the extraction protocol was investigated by extraction time, extraction temperature, liquid-to-material ratio, molar ratio, and ultrasonic power. The Box–Behnken design (BBD) combined with response surface methodology (RSM) was used to investigate the optimal DES conditions. The result showed that the best DES system was 1.3-butanediol/choline chloride (ChCl) with the molar ratio of 4:1. The optimal extraction process of licorice was 20 mL/g, the water content was 30%, and the extraction time was 41 min. The comprehensive impact factor (z) was 0.92. At the same time, it was found that the microstructure of the residue extracted by the eutectic solvent was more severely damaged than the residue after the traditional solvent extraction through observation under an electron microscope. The DES has the characteristics of high efficiency and rapidity as an extraction solution.


Planta Medica ◽  
2022 ◽  
Author(s):  
Elodie Bossard ◽  
Nikolaos Tsafantakis ◽  
Nektarios Aligiannis ◽  
Nikolas Fokialakis

Natural hydroxynaphthoquinone enantiomers (HNQs) are well-described pharmaceutical and cosmeceutical agents especially present in the roots of Alkanna tinctoria (L.) Tausch, a species native to the Mediterranean region. In this work, eco-friendly natural deep eutectic solvents (NaDESs) were developed for the selective extraction of these compounds. An extensive screening was performed using more than sixty tailor-made NaDESs. The impact of the intrinsic physicochemical properties on the HNQs extraction efficiency as well as the specificity towards the different enantiomeric pairs was thoroughly investigated. As a result of a multivariate analysis and of the one factor-a-time solvent optimization, the eutectic mixture composed of levulinic acid and glucose (LeG) using a molar ratio of 5:1 (molHBA:molHBD) and 20% of water (w/w) was found as the most appropriate mixture for the highest extraction efficiency of HNQs. Further optimization of the extraction process was attained by response surface methodology, using a temperature of 45 °C, a solid-to-liquid ratio of 30 mg/mL, and an extraction time of 50 min. A maximum extraction output of 41.72 ± 1.04 mg/g was reached for HNQs, comparable to that of the commonly used organic solvents. A solid-phase extraction step was also proposed for the recovery of HNQs and for NaDESs recycling. Our results revealed NaDESs as a highly customizable class of green solvents with remarkable capabilities for the extraction of HNQs.


2008 ◽  
Vol 27 (1) ◽  
pp. 25 ◽  
Author(s):  
Aleksandra Nestorovska-Krsteska ◽  
Meri Mirčeska ◽  
Jean-Jacques Aaron ◽  
Zoran Zdravkovski

An HPLC-UVDAD method for determination of dimethoate, 2,4-dichlorophenoxy acetic acid (2,4-D), mecoprop (MCPP) and linuron in environmental waters was developed. The water samples were concentrated and extracted by a solid phase extraction (SPE) method on Bond Elut PPL cartridges. After extraction the investigated compounds were separated on Stability RP Pesticides chromatographic column using mobile phase composed of acetonitrile- water-acetic acid in volume fractions of 39:59:2 and flow rate of 0.7 mL/min. Ultraviolet absorption detection was carried out for dimethoate, 2,4-D and MCPP at 229 nm, and for linuron at 249 nm. Recoveries made from 500 mL of drinking waters using solid phase extraction ranged between 64.3–92.1 %. The method was applied to environmental waters in Macedonia that receive runoffs from agriculture lands. The levels of pesticides under study ranged between 0.31 μg/L and 7.05 μg/L, depending on the compound and sampling period.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4736
Author(s):  
Sylwia Bajkacz ◽  
Kornelia Rusin ◽  
Anna Wolny ◽  
Jakub Adamek ◽  
Karol Erfurt ◽  
...  

A novel, efficient extraction procedure based on natural deep eutectic solvents (NADES) and ionic liquids (ILs) for determination of 20-hydroxyecdysone (20-E) in spinach has been developed. NADES, the first green extraction agent, with different hydrogen bond donors and acceptors are screened in order to determine extraction efficiencies. NADES consisting of lactic acid and levulinic acid at a molar ratio of 1:1 exhibits the highest yields. ILs, the second green extraction agent, with various cations and anions are also investigated, where [TEA] [OAc]·AcOH, χAcOH = 0.75 displays the highest recovery. Moreover, NADES-SLE and IL-SLE (SLE, solid-liquid extraction) parameters are investigated. Using the obtained optimized method, the recoveries of the target compound in spinach are above 93% and 88% for NADES-SLE and IL-SLE procedure, respectively. The methods display good linearity within the range of 0.5–30 μg/g and LODs of 0.17 µg/g. The proposed NADES-SLE-UHPLC-UV and IL-SLE-UHPLC-UV procedures can be applied to the analysis of 20-E in real spinach samples, making it a potentially promising technique for food matrix. The main advantage of this study is the superior efficiency of the new, green extraction solvents, which results in a significant reduction of extraction time and solvents as compared to those in the literature.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 242 ◽  
Author(s):  
Jeniffer Torres-Vega ◽  
Sergio Gómez-Alonso ◽  
José Pérez-Navarro ◽  
Edgar Pastene-Navarrete

Peumus boldus Mol., is a Chilean medicinal tree used for gastrointestinal and liver diseases. Such medicinal properties are associated with the presence of bioactive flavonoids and aporphine alkaloids. In this study, a new green and efficient extraction method used seven natural deep eutectic solvents (NADES) as extraction media. The extraction efficiency of these NADES was assessed, determining the contents of boldine and total phenolic compounds (TPC). Chemical profiling of P. boldus was done by high-performance liquid chromatography coupled to photo diode array detector and electrospray ion-trap mass spectrometry (HPLC-PDA-ESI-IT/MS) and electrospray ionization quadrupole time-of-flight high-resolution mass spectrometry (HPLC-ESI-QTOF-MS). Among the NADES tested, NADES4 (choline chloride-lactic acid) and NADES6 (proline-oxalic acid) enable better extraction of boldine with 0.427 ± 0.018 and 2.362 ± 0.055 mg of boldine g−1 of plant, respectively. Extraction of boldine with NADES4 and NADES6 was more efficient than extractions performed with methanol and water. On the other hand, the highest TPC were obtained using NADES6, 179.442 ± 3.79 mg of gallic acid equivalents (GAE g−1). Moreover, TPC in extracts obtained with methanol does not show significant differences with NADES6. The HPLC-PAD-MS/MS analysis enable the tentative identification of 9 alkaloids and 22 phenolic compounds. The results of this study demonstrate that NADES are a promising green extraction media to extract P. boldus bioactive compounds and could be a valuable alternative to classic organic solvents.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 18 ◽  
Author(s):  
Lele Yang ◽  
Ling Li ◽  
Hao Hu ◽  
Jianbo Wan ◽  
Peng Li

Natural deep eutectic solvents (NADESs), composed of natural primary metabolites, are now widely used as green and sustainable extraction solvents of bioactive components. In the present study, various NADESs were prepared to extract multi-components from different preparations of an herbal formula (Chinese name: Jinqi Jiangtang, JQJT) using ultrasound-assisted extraction (UAE). Results showed that most prepared NADESs provided more effective extraction of phenolic acids and alkaloids from JQJT preparations than conventional solvents. Among the tested NADESs, the solvent formed by choline chloride and laevulinic acid was selected to optimize the operational parameters using response surface methodology. The optimized extraction method was successfully applied to extract six major components in four commercial JQJT products, and quantification analysis was performed by the validated high-performance liquid chromatography with ultraviolet detection (HPLC-UV) method. The quantitative results indicated that preparations from different manufacturers showed different chemical profiles. In conclusion, NADESs-based UAE shows considerable potential as an efficient and green method for extraction of multi-bioactive components from commercial herbal preparations.


Sign in / Sign up

Export Citation Format

Share Document