36 fillersinjection methodsFiller Injection Methods

Keyword(s):  
Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 786
Author(s):  
Jiedong Ye ◽  
Junshuai Lv ◽  
Dongli Tan ◽  
Zhiqiang Ai ◽  
Zhiqiang Feng

The NH3 uniformity and conversion rate produced by the urea–water solution spray system is an essential factor affecting de-NOx efficiency. In this work, a three-dimensional simulation model was developed with the CFD software and was employed to investigate the effects of two typical injection methods (wall injection and center injection) and three distribution strategies (pre-mixer, post-mixer, pre-mixer, and post-mixer) of two typical mixers on the urea conversion rate and uniformity. The field synergy principle was employed to analyze the heat transfer of different mixer flow fields. The results show that the single mixer has instability in optimizing different injection positions due to different injection methods and injection positions. The dual-mixer is stable in the optimization of the flow field under different conditions. The conclusion of the field synergy theory of the single mixer accords with the simulation result. The Fc of the dual-mixer cases is low, but the NH3 conversion and uniformity index rate are also improved due to the increase in the residence time of UWS.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110209
Author(s):  
Zain Ul Hassan ◽  
Muhammad Usman ◽  
Muhammad Asim ◽  
Ali Hussain Kazim ◽  
Muhammad Farooq ◽  
...  

Despite a number of efforts to evaluate the utility of water-diesel emulsions (WED) in CI engine to improve its performance and reduce its emissions in search of alternative fuels to combat the higher prices and depleting resources of fossil fuels, no consistent results are available. Additionally, the noise emissions in the case of WED are not thoroughly discussed which motivated this research to analyze the performance and emission characteristics of WED. Brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) were calculated at 1600 rpm within 15%–75% of the load range. Similarly, the contents of NOx, CO, and HC, and level of noise and smoke were measured varying the percentage of water from 2% to 10% gradually for all values of loads. BTE in the case of water emulsified diesel was decreased gradually as the percentage of water increased accompanied by a gradual increase in BSFC. Thus, WED10 showed a maximum 13.08% lower value of BTE while BSFC was increased by 32.28%. However, NOx emissions (21.8%) and smoke (48%) were also reduced significantly in the case of WED10 along with an increase in the emissions of HC and CO and noise. The comparative analysis showed that the emulsified diesel can significantly reduce the emission of NOx and smoke, but it has a negative impact on the performance characteristics and HC, CO, and noise emissions which can be mitigated by trying more fuels variations such as biodiesel and using different water injection methods to decrease dependency on fossil fuels and improve the environmental impacts of CI engines.


2021 ◽  
pp. 152660282199671
Author(s):  
Robert Drescher ◽  
Philipp Seifert ◽  
Falk Gühne ◽  
René Aschenbach ◽  
Christian Kühnel ◽  
...  

Purpose: To evaluate the microsphere outflow dynamics and residual Ho-166 activity during and after transarterial radioembolization planning and treatment procedures, and to assess the distribution and predilection sites of residual activity in the proprietary delivery set and the microcatheter. Materials and Methods: Fifteen planning and 12 therapeutic radioembolization procedures were performed with poly-l-lactic acid microspheres loaded with Ho-166. The amount and distribution of residual activity was assessed by dose calibrator measurements and SPECT imaging. The activity flow profile from the microcatheter was assessed dynamically. For planning procedures, different injection methods were evaluated in order to attempt to decrease the residual activity. Results: The median residual activities for planning and treatment procedures using standard injection methods were 31.2% (range 17.3%–44.1%) and 4.3% (range 3.5%–6.9%), respectively. Planning residual activities could be decreased significantly with 2 injection methods similar to treatment procedures, to 17.5% and 10.9%, respectively ( P = 0.002). Main predilection sites of residual microspheres were the 3-way stopcock and the outflow needle connector. During treatment procedures, more than 80% of the injected activity is transferred during the first 3 injection cycles. Conclusion: After treatment procedures with holmium-loaded microspheres, mean residual activity in the delivery set is reproducibly low and between reported values for glass and resin microspheres. The majority of microspheres is transferred to the patient during the second and third injection cycle. An estimated residual waste of 3% to 4% may be included in the treatment activity calculation. For planning procedures, a modified injection technique should be used to avoid high residual activities.


2012 ◽  
Vol 516-517 ◽  
pp. 1022-1027 ◽  
Author(s):  
Dong Hu ◽  
Chuan Lin Tang ◽  
Feng Hua Zhang

In order to investigate the air injection method on the performance of an airlift. For this purpose an air lift system with a riser 2000 mm long and 80 mm in diameter, was designed and tested. Seven different air injection methods were used at a constant submergence. The experimental results showed a marked effect on the airlift performance when operated with different air injection methods. The arrangement of five nozzles gives the best performance, and the one nozzle is the worst. Although the injection angle has a little effect on the airlift performance, but view the general conclusions as a whole, the best lifting efficiency can be obtained when the angle of the nozzle placed along the tangential direction of pipe wall is equal to 10º at a given air flow rate QG =37m3/h.


Sign in / Sign up

Export Citation Format

Share Document