Efficacy of Punica granatum extract on in vitro and in vivo control of Trichomonas vaginalis

Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
GT El Sherbini ◽  
KM Ibrahim ◽  
ET El Sherbini ◽  
NM Abdel Hady ◽  
TA Morsy
Parasitology ◽  
1993 ◽  
Vol 106 (1) ◽  
pp. 31-37 ◽  
Author(s):  
J. Tachezy ◽  
J. Kulda ◽  
E. Tomková

SUMMARYAerobic resistance of Trichomonas vaginalis to metronidazole was induced in vitro by anaerobic cultivation of drug-susceptible trichomonads with low concentrations of the drug (2–3 μg/ml) for 50 days. Minimal lethal concentrations (MLC) for metronidazole of the resistant derivatives were high in aerobic susceptibility assays (MLC = 216–261.5 μg/ml) but low in anaerobic assays (MLC = 4.2–6.3 μg/ml), surpassing MLC values of their parent strain approximately 50-fold and 3-fold under aerobiosis and anaerobiosis, respectively. Sensitivity to metronidazole under anaerobic conditions and activity of the hydrogenosomal enzyme pyruvate: ferredoxin oxidoreductase indicated that the resistance was of the aerobic type. Dependence of the resistance manifestation on O2 was further confirmed by susceptibility assays in vitro performed in defined gas mixtures of different oxygen content (1–20%). Five percent concentration of O2 proved to be the threshold required for resistance demonstration and the MLC values further increased with increasing O2 concentrations. The in vitro-induced resistance was also demonstrated in vivo by subcutaneous mouse assay. The dose of metronidazole needed to cure 50% of infected mice (DC50) was 223 mg/kg × 3 for resistant derivative MR-3a but 6.6 mg/kg × 3 only for its drug-susceptible parent strain. The metronidazole – resistant strains developed in this study correspond by their properties to drug-resistant T. vaginalis strains isolated from patients refractory to treatment, and promise to be a useful tool in the study of 5-nitroimidazole aerobic resistance.


Author(s):  
Hajar ZIAEI HEZARJARIBI ◽  
Najmeh NADEALI ◽  
Mahdi FAKHAR ◽  
Masoud SOOSARAEI

Background: Trichomoniasis, due to Trichomonas vaginalis, is one of the most common sexually transmitted parasitic diseases in the world such as Iran. This systematic review aimed to explore the studies evaluating the medicinal herbs with anti- T. vaginalis activity which used in Iran. Methods: Articles published in 4 Persian and 4 English databases were obtained between 2000 and 2015 including Google Scholar, PubMed, Science Direct, Scopus, Magiran, Barakatkns (formerly IranMedex), Elm net, and SID (Scientific Information Database). Studies out of Iran, studies on animal models and articles on other parasite species than T. vaginalis were excluded from this review. Results: Twenty-one articles including in vitro experiments, met our eligibility criteria. Thoroughly, 26 types of plants were examined against T. vaginalis. Medicinal herbs such as Artemisia, Zataria multiflora, and Lavandula angustifolia are remarkably effective on T. vaginalis. As such, use of other parts of these plants in different concentrations and timelines is recommended for future in vivo studies. Conclusion: The present systematic review provides comprehensive and useful information about Iranian medicinal plants with anti-T. vaginalis activity, which would be examined in the future experimental and clinical trials and herbal combination therapy.


2019 ◽  
Vol 25 (16) ◽  
pp. 1817-1827 ◽  
Author(s):  
Vesna Vučić ◽  
Milkica Grabež ◽  
Armen Trchounian ◽  
Aleksandra Arsić

Background:: Pomegranate (Punica granatum L.) fruits are widely consumed and used as preventive and therapeutic agents since ancient times. Pomegranate is a rich source of a variety of phytochemicals, which are responsible for its strong antioxidative and anti-inflammatory potential. Objective:: The aim of this review is to provide an up-to-date overview of the current knowledge of chemical structure and potential health benefits of pomegranate. Method: : A comprehensive search of available literature. Results:: The review of the literature confirms that juice and extracts obtained from different parts of this plant, including fruit peel, seeds, and leaves exert health benefits in both in vitro and in vivo studies. The antidiabetic, antihypertensive, antimicrobial and anti-tumour effects of pomegranate fruit are of particular scientific and clinical interest. Conclusion:: Further investigations are required to clarify the mechanism of action of the bioactive ingredients and to reveal full potential of pomegranate as both preventive and therapeutic agent.


2020 ◽  
Vol 18 (1) ◽  
pp. 2-14 ◽  
Author(s):  
Aida Doostkam ◽  
Kamyar Iravani ◽  
Shahindokht Bassiri-Jahromi

: Polyphenols have received high attention due to their biological functions. Pomegranate (Punica granatum L.) is a rich source of polyphenols such as tannin, ellagitannin, flavonoids and other phenolic acids. The potential therapeutic uses of pomegranate appear to be wide diversity. Pomegranate contains strong antioxidant activity, and antimicrobial properties, with potential health interests. : This review has been performed on a method of systematic narrative review on the antimicrobial potency of different parts of pomegranate. A search was performed in PubMed, Web of Science, Science Direct, Scopus and Google Scholar from 1986 to 2018 to obtain related studies. The aim of this review present an overview of the aspect and advantages of Punica granatum L. and summarize the present data on the pomegranate anti-microbial activity in in-vitro and in-vivo tests, animal trial systems and human clinical trials. Also, this review discussed the pomegranate extracts activities and their future application. : The findings of this review support that the pomegranate might be possible to use in the control and potential therapeutics of some microbial infections. This review highlights the new researches on the anti-microbial activities of pomegranate.


2001 ◽  
Vol 45 (6) ◽  
pp. 1743-1745 ◽  
Author(s):  
Graham H. Coombs ◽  
Jeremy C. Mottram

ABSTRACT Methionine γ-lyase, the enzyme which catalyzes the single-step conversion of methionine to α-ketobutyrate, ammonia, and methanethiol, is highly active in many anaerobic pathogenic microorganisms but has no counterpart in mammals. This study tested the hypothesis that this pathogen-specific enzyme can be exploited as a drug target by prodrugs that are exclusively activated by it. Trifluoromethionine was confirmed as such a prodrug and shown to be highly toxic in vitro to the anaerobic protozoan parasiteTrichomonas vaginalis, to anaerobic bacteria containing methionine γ-lyase, and to Escherichia coli expressing the trichomonad gene. The compound also has exceptional activity against the parasite growing in vivo, with a single dose preventing lesion formation in five of the six mice challenged. These findings suggest that trifluoromethionine represents a lead compound for a novel class of anti-infective drugs with potential as chemotherapeutic agents against a range of prokaryotic and eukaryotic anaerobic pathogens.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Jang-Gi Choi ◽  
Ok-Hwa Kang ◽  
Young-Seob Lee ◽  
Hee-Sung Chae ◽  
You-Chang Oh ◽  
...  

Punica granatumis commonly used in Korea as a traditional medicine for the treatment of pathogenic bacteria. In this study, we investigated thein vitroandin vivoantimicrobial activity ofP. granatumpeel EtOH extract (PGPE) against 16 strains ofSalmonella. The minimal inhibitory concentrations of PGPE were in the range of 62.5–1000 x03BCg mL-1. In addition, thein vivoantibacterial activity of the PGPE extract was examined in aS. typhimuriuminfection mouse model. Mice were initially infected withS. typhimuriumand then with PGPE. The extract was found to have significant effects on mortality and the numbers of viableS. typhimuriumrecovered from feces. Although clinical signs and histological damage were rarely observed in the treated mice, the untreated controls showed signs of lethargy and histological damage in the liver and spleen. Taken together, the results of this study indicate that PGPE has the potential to provide an effective treatment for salmonellosis.


2010 ◽  
Vol 118 (2) ◽  
pp. 315-322 ◽  
Author(s):  
Chia-Jung Lee ◽  
Lih-Geeng Chen ◽  
Wen-Li Liang ◽  
Ching-Chiung Wang

2016 ◽  
Vol 45 (1) ◽  
pp. 38-44 ◽  
Author(s):  
S. Mohajer ◽  
R.M. Taha ◽  
S.Z. Azmi

Purpose – The purpose of this paper is to identify the most dominant pigment of pomegranate explants for natural color coatings and detect the presence of phytochemical constituents and comparison of the antioxidant activities. Design/methodology/approach – Extracts of leaf, stem, peel and seed of in vitro and in vivo growth cultures were prepared for phytochemical constituent and antioxidant activity. The supernatant from 95 per cent methanol was mixed with 15 per cent polyvinyl alcohol (PVA) with the ratio of 1:1 to form a coating system. Findings – Although glycosides was not found in this species, tests for tannins and flavonoids were positive in all samples. The IC50 values were also comparable to commercial antioxidant ascorbic acid with 34.92 per cent inhibition. Chlorophyll a and b were detected in stem and leaf using UV-photospectrometer in 420 and 645 nm wavelengths ranges. The effects of heat and salt on the stability of natural dye colorants mixed with polyvinyl alcohol to form a basic coating system were indicated negatively in in vivo and in vitro growth cultures. Originality/value – The paper shows that further improvement with co-pigmentations may give a notable mixture from pomegranate extraction for the paint materials or nail varnish. It was also indicated that pomegranate contains some compounds such as polyphenolics that can donate electron/hydrogen easily.


2007 ◽  
Vol 20 (1) ◽  
pp. 164-187 ◽  
Author(s):  
Vahab Ali ◽  
Tomoyoshi Nozaki

SUMMARY The “amitochondriate” protozoan parasites of humans Entamoeba histolytica, Giardia intestinalis, and Trichomonas vaginalis share many biochemical features, e.g., energy and amino acid metabolism, a spectrum of drugs for their treatment, and the occurrence of drug resistance. These parasites possess metabolic pathways that are divergent from those of their mammalian hosts and are often considered to be good targets for drug development. Sulfur-containing-amino-acid metabolism represents one such divergent metabolic pathway, namely, the cysteine biosynthetic pathway and methionine γ-lyase-mediated catabolism of sulfur-containing amino acids, which are present in T. vaginalis and E. histolytica but absent in G. intestinalis. These pathways are potentially exploitable for development of drugs against amoebiasis and trichomoniasis. For instance, l-trifluoromethionine, which is catalyzed by methionine γ-lyase and produces a toxic product, is effective against T. vaginalis and E. histolytica parasites in vitro and in vivo and may represent a good lead compound. In this review, we summarize the biology of these microaerophilic parasites, their clinical manifestation and epidemiology of disease, chemotherapeutics, the modes of action of representative drugs, and problems related to these drugs, including drug resistance. We further discuss our approach to exploit unique sulfur-containing-amino-acid metabolism, focusing on development of drugs against E. histolytica.


1962 ◽  
Vol 17 (3) ◽  
pp. 196-199
Author(s):  
Takeshi HOSHIAI ◽  
Shinkichi AKAO ◽  
Shozo TAMURA ◽  
Yasushi ISHIBASHI ◽  
Kanji YAMAOKA

Sign in / Sign up

Export Citation Format

Share Document