Proteinase-inhibiting activity of an extract of Rumex acetosa L. against virulence factors of Porphyromonas gingivalis

Planta Medica ◽  
2013 ◽  
Vol 79 (13) ◽  
Author(s):  
S Beckert ◽  
A Hensel
F1000Research ◽  
2021 ◽  
Vol 9 ◽  
pp. 1499
Author(s):  
Endang Winiati Bachtiar ◽  
Citra F. Putri ◽  
Retno D. Soejoedono ◽  
Boy M. Bachtiar

Porphyromonas gingivalis has virulence factors such as gingipain and lipopolysaccharide, causing bacteremia to reach the brain and activate neuroinflammatory release cytokines. This study analyzed the effect of the co-culture of neuron cells with P. gingivalis coated with anti-P. gingivalis antibodies against cytokines produced by neuron cells. The gene expressions of the TNF, IL1B, iNOS2 in neurons was evaluated using RT-qPCR. The results showed that P. gingivalis coated with anti-P. gingivalis antibody before co-culture with neuron cells could decrease the gene expression of TNF, IL1B, and iNOS2 of neuron cells.


2006 ◽  
Vol 85 (3) ◽  
pp. 209-219 ◽  
Author(s):  
Y.-T.A. Teng

Based on the results of recent research in the field and Part 1 of this article (in this issue), the present paper will discuss the protective and destructive aspects of the T-cell-mediated adaptive immunity associated with the bacterial virulent factors or antigenic determinants during periodontal pathogenesis. Attention will be focused on: (i) osteoimmunology and periodontal disease; (ii) some molecular techniques developed and applied to identify critical microbial virulence factors or antigens associated with host immunity (with Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis as the model species); and (iii) summarizing the identified virulence factors/antigens associated with periodontal immunity. Thus, further understanding of the molecular mechanisms of the host’s T-cell-mediated immune responses and the critical microbial antigens related to disease pathogenesis will facilitate the development of novel therapeutics or protocols for future periodontal treatments. Abbreviations used in the paper are as follows: A. actinomycetemcomitans ( Aa), Actinobacillus actinomycetemcomitans; Ab, antibody; DC, dendritic cells; mAb, monoclonal antibody; pAb, polyclonal antibody; OC, osteoclast; PAMP, pathogen-associated molecular patterns; P. gingivalis ( Pg), Porphyromonas gingivalis; RANK, receptor activator of NF-κB; RANKL, receptor activator of NF-κB ligand; OPG, osteoprotegerin; TCR, T-cell-receptors; TLR, Toll-like receptors.


2020 ◽  
Vol 11 ◽  
Author(s):  
Chiaki Yamada ◽  
Juliet Akkaoui ◽  
Anny Ho ◽  
Carolina Duarte ◽  
Richard Deth ◽  
...  

BackgroundAmong different types of sphingolipids produced by human cells, the possible engagement of ceramide species in the pathogenesis of Alzheimer’s disease (AD) has attracted recent attention. While ceramides are primarily generated by de novo synthesis in mammalian cells, only a limited number of bacterial species, produce ceramides, including phosphoglycerol dihydroceramide (PGDHC) that is produced by the key periodontal pathogen Porphyromonas gingivalis. Emerging evidence indicates that virulence factors produced by P. gingivalis, such as lipopolysaccharide and gingipain, may be engaged in the initiation and/or progression of AD. However, the potential role of PGDHC in the pathogenesis of AD remains unknown. Therefore, the aim of this study was to evaluate the influence of PGDHC on hallmark findings in AD.Material and MethodsCHO-7WD10 and SH-SY-5Y cells were exposed to PGDHC and lipopolysaccharide (LPS) isolated from P. gingivalis. Soluble Aβ42 peptide, amyloid precursor protein (APP), phosphorylated tau and senescence-associated secretory phenotype (SASP) factors were quantified using ELISA and Western blot assays. ResultsOur results indicate that P. gingivalis (Pg)-derived PGDHC, but not Pg-LPS, upregulated secretion of soluble Aβ42 peptide and expression of APP in CHO-7WD10 cells. Furthermore, hyperphosphorylation of tau protein was observed in SH-SY-5Y cells in response to PGDHC lipid. In contrast, Pg-LPS had little, or no significant effect on the tau phosphorylation induced in SH-SY-5Y cells. However, both PGDHC and Pg-LPS contributed to the senescence of SH-SY5Y cells as indicated by the production of senescence-associated secretory phenotype (SASP) markers, including beta-galactosidase, cathepsin B (CtsB), and pro-inflammatory cytokines TNF-α, and IL-6. Additionally, PGDHC diminished expression of the senescence-protection marker sirtuin-1 in SH-SY-5Y cells.ConclusionsAltogether, our results indicate that P. gingivalis-derived PGDHC ceramide promotes amyloidogenesis and hyperphosphorylation, as well as the production of SASP factors. Thus, PGDHC may represent a novel class of bacterial-derived virulence factors for AD associated with periodontitis.


1995 ◽  
Vol 9 (1) ◽  
pp. 37-40 ◽  
Author(s):  
H.K. Kuramitsu ◽  
M. Yoneda ◽  
T. Madden

Proteases expressed by Porphyromonas gingivalis have been considered as potential virulence factors for these periodontopathic micro-organisms. The introduction of molecular genetic approaches to study these enzymes has clearly demonstrated that these organisms are capable of expressing multiple distinct proteases. Several of these enzymes are apparently expressed as active proteolytic products following processing of larger precursor proteins. In addition, more recent data have suggested a close relationship between some of these enzymes and two other potential virulence factors of these organisms: hemagglutinins and collagenases.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ellen Karla Nobre dos Santos-Lima ◽  
Kizzes Araújo Paiva Andrade Cardoso ◽  
Patrícia Mares de Miranda ◽  
Ana Carla Montino Pimentel ◽  
Paulo Cirino de Carvalho-Filho ◽  
...  

1996 ◽  
Vol 51 (3) ◽  
pp. 803-811 ◽  
Author(s):  
Shigemasa HANAZAWA ◽  
Yukio MURAKAMI

2020 ◽  
Vol 23 (1) ◽  
pp. 6-12
Author(s):  
Tienneke Riana Septiwidyati ◽  
Endang Winiati Bachtiar

Porphyromonas gingivalis is an anaerobic Gram-negative oral bacterium involved in the pathogenesis of periodontitis. Periodontitis is an infection that is characterized by damage to the supporting tissues of the teeth so that it can cause tooth loss if not given treatment. P. gingivalis locally can invade periodontal tissue and avoid host defense mechanisms. This bacterium has virulence factors which can cause deregulation of innate immune responses and inflammation in the host. The role of P. gingivalis virulence factors such as capsules, fimbriae, lipopolysaccharides, and gingipain in the pathogenesis of periodontitis will be discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document