Cytoprotective and antiadhesive effects of aqueous leaf extract from Orthosiphon aristatus against uropathogenic E. coli

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381 ◽  
Author(s):  
S Sarshar ◽  
MR Asadi Karam ◽  
M Habibi ◽  
S Bouzari ◽  
X Qin ◽  
...  
Author(s):  
Ghaleb M. Adwan ◽  
Ghadeer Ibrahim Omar

Objective: The aims of this study were to evaluate the antimicrobial activity and the genotoxic effect of both ethanolic and aqueous extracts of stem and leaf of Capparis spinosa (C. spinosa) plant on Escherichia coli (E. coli) ATCC 25922, Staphylococcus aureus (S. aureus) ATCC 6538P, clinical isolate of Methicillin-resistant S. aureus (MRSA) and Klebsiella pneumoniae (K. pneumoniae) and Candida albicans (C. albicans) ATCC 90028. Materials and Methods: The antimicrobial activity was determined using microbroth dilution method, while the genotoxic effect was investigated using randomly amplified polymorphic DNA (RAPD)-PCR and enterobacterial repetitive intergenic consensus (ERIC)-PCR. Results: The MIC values of both ethanolic and aqueous leaf and stem extracts of C. spinosa plant had a range 6.25 mg/ml to 100 mg/ml. In addition, it was found that ethanolic extract more effective than aqueous extract. The genotoxic activity of aqueous leaf extract, showed changes in both Random Amplified Polymorphic DNA (RAPD)-PCR and Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR profiles of E. coli strain treated with extract compared to untreated (negative) control. These changes included an alteration in the intensity, absence or appearance of new amplified fragments. Conclusions: Results of this study strongly show the genotoxic effect of aqueous leaf extract from C. spinosa plant on E. coli. The findings draw awareness to the possible toxic effect use of C. spinosa plant in traditional medicine and point out the capability of using C. spinosa to treat bacterial or fungal infections. More studies are needed to detect the exact ingredients of this plant as well as the mechanisms responsible for genotoxicity. Further in vivo genotoxicity studies are recommended to ensure and to evaluate the safety of using plants for therapeutic purposes. In addition, results of this study showed that molecular fingerprinting based on ERIC-PCR can be used to evaluate the genotoxic effect in the model bacterial species E. coli.


2014 ◽  
Vol 2 (3) ◽  
pp. 279-282 ◽  
Author(s):  
N. Packialakshmi ◽  
H. Fazila Beevi

The present study deals with the aqueous leaf extract and synthesized silver nanoparticle of Argyreia cymosa (Roxb) were evaluated for antibacterial activity. The aqueous leaf extract and synthesized nanoparticle of Argyreia cymosa is active against E. coli, P. aeruginosa, Bacillus and S. aureus. The aqueous leaf extract showed maximum activity against Bacillus (20mm), S.aureus (18mm), P. aeruginosa (13mm) E.coli (12mm) and the synthesized silver nano particle showed maximum activity against Bacillus (27mm), E. coli (21mm) , S. aureus (12mm) and P. aeruginosa (11mm). DOI: http://dx.doi.org/10.3126/ijasbt.v2i3.10935Int J Appl Sci Biotechnol, Vol. 2(3): 279-282  


2019 ◽  
Vol 35 (1) ◽  
pp. 145-153
Author(s):  
O. Uyi, ◽  
I.G. Amolo ◽  
A.D. Adetimehin

Several studies have demonstrated the biological efficacy of leaf, stem and root powders or extracts of Chromolaena odorata (L.) King and Robinson against insect pests but those that are focused on the biological efficacy of aqueous leaf extracts against Macrotermes species are scanty. Current management of termites with synthetic insecticides is being discouraged due to human and environmental hazards. Therefore, the insecticidal effectiveness of aqueous leaf extract C. odorata against Macrotermes species was investigated. Five concentrations (0, 2.5, 5.0, 7.5 and 10.0% (w/v)) of the aqueous extract of C. odorata plant were evaluated for repellency and toxicity on the worker caste of Macrotermes species following standard procedures. The filter paper impregnation technique was used for the bioassay. Percentage repellency was monitored for 30 minutes and mortality recorded at 12, 24 and 36 hours post exposure. The leaf extract of C. odorata significantly repelled 95% of Macrotermes species at the highest concentration of 10% (w/v) after 30 minutes post treatment exposure. Mortality of Macrotermes species was independent of treatment concentration, but dependent on duration of exposure. All treatment concentrations of aqueous leaf extract of C. odorata caused significant mortality against Macrotermes species ranging between 94% and 98% compared to the control; indicating very great potential for adoption and use in the management of Macrotermes species.


Author(s):  
M. Linga Rao ◽  
Bhumi G ◽  
Savithramma N

Silver nanoparticles (SNPs) exhibit tremendous applications in medicine as antimicrobial agent.  The use of different parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals.  In the present study, we report a rapid biosynthesis of silver nanoparticles from aqueous leaf extract of medicinal plant Allamanda cathartica.  The active phytochemicals present in the plant were responsible for the quick reduction of silver ion to metallic silver nanoparticles. The reduced silver nanoparticles were characterized by using UV-Vis spectrophotometry, Scanning Electron Microscope (SEM), Energy Dispersive Analysis of X-ray (EDAX) and Atomic Force Microscopy (AFM).  The spherical shaped silver nanoparticles were observed and it was found to 19-40 nm range of size.  These phytosynthesized SNPs were tested for their antimicrobial activity and it analyzed by measuring the inhibitory zone. A. cathartica aqueous leaf extract of SNPs showed highest toxicity to Pseudomonas followed by Klebsiella, Bacillus and E. coli and lowest toxicity towards Proteus. In fungal species, highest inhibition zone was noted against Rhizopus followed by Curvularia, Aspergillus flavus and Aspergillus niger and minimum inhibition zone was observed against Fusarium species.  These results suggest a promising potential of Indian plant-based green chemistry for production of SNPs for biomedical and nanotechnology applications.


Author(s):  
K.K. Gupta ◽  
Neha Kumari ◽  
Neha Sinha ◽  
Akruti Gupta

Biogenic synthesis of silver nanoparticles synthesized from Hymenocallis species (Spider Lilly) leaf extract was subjected for investigation of its antimicrobial property against four bacterial species (E. coli, Salmonella sp., Streptococcus sp. & Staphylococcus sp.). The results revealed that synthesized nanoparticles solution very much justify the color change property from initial light yellow to final reddish brown during the synthesis producing a characteristics absorption peak in the range of 434-466 nm. As antimicrobial agents, their efficacy was evaluated by analysis of variance in between the species and among the different concentration of AgNPs solution, which clearly showed that there was significant variation in the antibiotic property between the four different concentrations of AgNPs solution and also among four different species of bacteria taken under studies. However, silver nanoparticles solution of 1: 9 and 1:4 were proved comparatively more efficient as antimicrobial agents against four species of bacteria.


2021 ◽  
pp. 111335
Author(s):  
Mathiyazhagan Narayanan ◽  
Paramasivam Vigneshwari ◽  
Devarajan Natarajan ◽  
Sabariswaran Kandasamy ◽  
Mishal Alsehli ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Manasi S. Gholkar ◽  
Jia V. Li ◽  
Poonam G. Daswani ◽  
P. Tetali ◽  
Tannaz J. Birdi

Abstract Background Herbal medicines are fast gaining popularity. However, their acceptability by modern practitioners is low which is often due to lack of standardization. Several approaches towards standardization of herbals have been employed. The current study attempted to recognize key peaks from 1H NMR spectra which together would comprise of a spectral fingerprint relating to efficacy of Psidium guajava (guava) leaf extract as an antidiarrhoeal when a number of unidentified active principles are involved. Methods Ninety samples of guava leaves were collected from three locations over three seasons. Hydroalcoholic (water and ethanol, 50:50) extracts of these samples were prepared and their 1H NMR spectra were acquired. Spectra were also obtained for quercetin, ferulic acid and gallic acid as standards. Eight bioassays reflecting different stages of diarrhoeal pathogenesis were undertaken and based on pre-decided cut-offs, the extracts were classified as ‘good’ or ‘poor’ extracts. The bioactivity data was then correlated with the 1H NMR profiles using Regression or Orthogonal Partial Least Square-Discriminant Analysis (OPLS-DA). Results OPLS-DA showed seasonal and regional segregation of extracts. Significant models were established for seven bioassays, namely those for anti-bacterial activity against Shigella flexneri and Vibrio cholerae, adherence of E. coli, invasion of E. coli and S. flexneri and production and binding of toxin produced by V. cholerae. It was observed that none of the extracts were good or bad across all the bioassays. The spectral analysis showed multiple peaks correlating with a particular activity. Based on NMR and LC-MS/MS, it was noted that the extracts contained quercetin, ferulic acid and gallic acid. However, they did not correlate with the peaks that segregated extracts with good and poor activity. Conclusions The current study identified key peaks in 1H NMR spectra contributing to the anti-diarrhoeal activity of guava leaf extracts. The approach of using spectral fingerprinting employed in the present study can thus be used as a prototype towards standardization of plant extracts with respect to efficacy.


2021 ◽  
Vol 8 ◽  
pp. 239-247
Author(s):  
SD. E. Osagie-Eweka ◽  
N.E.J. Orhue ◽  
E.K.I. Omogbai ◽  
F.C. Amaechina

Sign in / Sign up

Export Citation Format

Share Document