Combined traffic noise exposure from different sources: is the whole more than the sum of its parts?

2017 ◽  
Author(s):  
A Seidler ◽  
J Hegewald ◽  
AL Seidler ◽  
M Schubert ◽  
H Zeeb
2018 ◽  
Vol 2017 (1) ◽  
pp. 263
Author(s):  
Andreas Seidler ◽  
Janice Hegewald ◽  
Anna Lene Seidler ◽  
Melanie Schubert ◽  
Hajo Zeeb

2013 ◽  
Vol 40 (2) ◽  
Author(s):  
Ni Ketut Susilawati ◽  
Wayan Sudana ◽  
Eka Putra Setiawan

Background: Noise pollution or noise is an unwanted sound which is disturbing to human beings.However small or soft the sound, if it is undesirable it is considered as noise. Noise induced hearingloss is a sensorineural hearing loss that is commonly encountered second to presbycusis. Purpose: Toknow the effect of traffic noise exposure on hearing impairment to the employees of the Parking DistrictCompany of the Denpasar city and to improve diagnostic detection on hearing impairment caused bynoise. Method: A cross sectional study was conducted at the Parking District Company office. Thepopulations of this study were the employees of the Parking District Company. Samples of this study were the employees who were exposed to traffic noise and control samples were an employee who was unexposed. Samples were selected by simple random sampling. Results: From 40 parking attendants,27 persons (67.5%) aged above 35 years old. The parking attendants who had been working for ten to fifteen years were 36 persons (90%) and no history using ear protection when working. Seven persons(17.5%) had referred DPOAE upon examination with increase hearing threshold on audiogram result.In this study the parking attendants who had hearing deficit induced by noise were 7 persons (17.5%)and only one person (2.5%) in control group. There was a statistically significant effect of traffic noiseto hearing function deficit (p<0.05). Conclusion: Traffic noise has effect in hearing function deficit onthe parking attendants.ORLI Vol. 40 No. 2 Tahun 2010Key words: NIHL, parking attendant, audiometry, DPOAE.


2021 ◽  
Vol 7 (20) ◽  
pp. eabe2405
Author(s):  
Henrik Brumm ◽  
Wolfgang Goymann ◽  
Sébastien Derégnaucourt ◽  
Nicole Geberzahn ◽  
Sue Anne Zollinger

Noise pollution has been linked to learning and language deficits in children, but the causal mechanisms connecting noise to cognitive deficiencies remain unclear because experimental models are lacking. Here, we investigated the effects of noise on birdsong learning, the primary animal model for vocal learning and speech development in humans. We found that traffic noise exposure retarded vocal development and led to learning inaccuracies. In addition, noise suppressed immune function during the sensitive learning period, indicating that it is a potent stressor for birds, which is likely to compromise their cognitive functions. Our results provide important insights into the consequences of noise pollution and pave the way for future studies using birdsong as an experimental model for the investigation of noise-induced learning impairments.


Noise Mapping ◽  
2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Ioannis Karipidis ◽  
Danielle Vienneau ◽  
Manuel Habermacher ◽  
Micha Köpflii ◽  
Mark Brink ◽  
...  

AbstractIn 2014 the three-year interdisciplinary study SiRENE (Short and Long Term Effects of Traffic Noise Exposure) was launched in Switzerland. The goal of SiRENE is to investigate acute, short- and long-term e_ects of road, railway and aircraft noise exposure on annoyance, sleep disturbances and cardio-metabolic risk.The study is based on a detailed Swiss-wide assessment of transportation noise exposure, including diurnal distributions. The exposure analysis comprises current as well as historical exposure calculations for up to 20 years in the past.We present the major challenges of compiling sufficient data to support a Swiss-wide model for all buildings and including all transport infrastructure as a basis for the subsequent SiRENE sound exposure analysis for the years 2011, 2001 and 1991. The task is particularly challenging for the early years due to poor data quality and/or lack of availability. We address the integration of geo-referenced input datasets from various sources and time periods, the assignment of tra_c noise exposure from façade points to dwelling units, as well as the processing of traffic information and statistics. Preliminary results of the noise exposure calculations are presented.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Myrela Alves ◽  
David M. Garner ◽  
Anne M. G. G. Fontes ◽  
Luiz Vinicius de Alcantara Sousa ◽  
Vitor E. Valenti

Previous studies have described significant impact of different types of noise on the linear behavior of heart rate variability (HRV). However, there are few studies regarding the complexity of HRV during exposure to traffic noise. In this study, we evaluated the complexity of HRV during traffic noise exposure. We analyzed 31 healthy female students aged between 18 and 30 years. Volunteers remained at rest seated under spontaneous breathing during 10 minutes with an earphone turned off, and then they were exposed to traffic noise through an earphone for a period of 10 minutes. The traffic noise was recorded from a very busy city street and the sound was comprised of car, bus, and trucks engines and horn (71–104 dB). We observed no significant changes in the linear analysis of HRV. CFP3 (Cohen’s d=1.28, large effect size) and CFP6 (Cohen’s d=1.11, large effect size) parameters of chaotic global analysis and Shannon (Cohen’s d=1.13, large effect size), Renyi (Cohen’s d=1.06, large effect size), and Tsallis (Cohen’s d=1.14, large effect size) entropies significantly increased p<0.005 during traffic noise exposure. In conclusion, traffic noise under laboratory conditions increased the complexity of HRV through chaotic global analysis and some measures of entropy in healthy females.


2021 ◽  
Vol 263 (4) ◽  
pp. 2550-2554
Author(s):  
Timothy Van Renterghem ◽  
Pieter Thomas ◽  
Dick Botteldooren

Excessive road traffic noise exposure in (sub)urban parks hinders its restorative function and will negatively impact the number of visitors. Especially in such green environments, noise abatements by natural means, well integrated in the landscape, are the most desired solutions. Although dense vegetation bordering the park or raised berms could come first in mind, local landscape depressions are typically underused. In this work, a case-study of a small suburban park, squeezed in between two major arterial roads, is analyzed. The spatially dependent road traffic noise exposure in the park is assessed in detail by mobile sound pressure level measurements. Local reductions of up to 6-7 dBA are found at landscape depressions of only a few meters deep. It can therefore be concluded that this is an efficient measure and should be added to the environmental noise control toolbox for noise polluted parks.


2022 ◽  
Vol 186 ◽  
pp. 108436
Author(s):  
Jens Forssén ◽  
Andreas Gustafson ◽  
Meta Berghauser Pont ◽  
Marie Haeger-Eugensson ◽  
Christine Achberger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document