Ergebnisse der Fettsäure-SPECT des Myokards bei der koronaren Herzerkrankung

1986 ◽  
Vol 25 (03) ◽  
pp. 90-98 ◽  
Author(s):  
F. F. Knapp ◽  
J. Nitsch ◽  
J. Kropp ◽  
K. Reichmann ◽  
C. Winkler ◽  
...  

New developments in radiopharmacology of 123l-labeled metabolic tracers and single-photon emission computerized tomography (SPECT) allow now-a-days the assessment of parameters of cardiac energy metabolism in well-defined areas of the heart muscle. This article will present a brief outline of the basic pathophysiological principles used in the application of 123l-labeled phenyl fatty acids for the evaluation of CAD. First clinical results suggest an important application of cardiac fatty acid metabolic imaging to the detection, localisation and conceivable quantitation of myocardial ischemia, myocardial infarction and assessment of tissue viability. In addition to the diagnostic applications in CAD, cardiac fatty acid metabolic imaging may provide new perspectives to pathophysiological investigations of the coupling of local flow and substrate utilisation in vivo and the effect of therapeutic interventions.

2009 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Nagara Tamaki ◽  
Yuji Kuge ◽  
Keiichiro Yoshinaga ◽  
◽  
◽  
...  

Glucose and free fatty acids are a major energy source in the myocardium. Metabolic imaging with single photon emission tomography (SPECT) and positron emission tomography (PET) have been widely used for the evaluation of the pathophysiology of coronary artery disease (CAD) and heart failure. 18F fluorodeoxyglucose (FDG) is a glucose analogue that is used to measure myocardial glucose utilisation. The myocardial uptake of a modified branched fatty acid, 15-(p-[iodine-123] iodophenyl)-3-(R,S) methylpentadecanoic acid (BMIPP), reflects the activation of fatty-acid metabolism by co-enzyme A (CoA) and indirectly reflects cellular adenosine triphosphate (ATP) production. The turnover rate of the tricarboxylic acid (TCA) cycle reflects the rate of overall myocardial oxidative metabolism. 11C acetate is readily metabolised to CO2 almost exclusively through the TCA cycle. These three major agents have been most commonly used for probing myocardial energy metabolism in vivo. Such metabolic imaging has been used for assessing myocardial viability on the basis of persistent glucose utilisation in ischaemic but viable myocardium. BMIPP and FDG have been identified for locating a recent history of myocardial ischaemia. Furthermore, metabolic imaging is promising for the assessment of the pathophysiology of heart failure and the treatment effect of various drugs, as well as mechanical treatments. In this article we will provide an overview of the application of myocardial metabolic imaging in a clinical setting.


2019 ◽  
Vol 19 (12) ◽  
pp. 950-960
Author(s):  
Soghra Farzipour ◽  
Seyed Jalal Hosseinimehr

Tumor-targeting peptides have been generally developed for the overexpression of tumor specific receptors in cancer cells. The use of specific radiolabeled peptide allows tumor visualization by single photon emission computed tomography (SPECT) and positron emission tomography (PET) tools. The high affinity and specific binding of radiolabeled peptide are focusing on tumoral receptors. The character of the peptide itself, in particular, its complex molecular structure and behaviors influence on its specific interaction with receptors which are overexpressed in tumor. This review summarizes various strategies which are applied for the expansion of radiolabeled peptides for tumor targeting based on in vitro and in vivo specific tumor data and then their data were compared to find any correlation between these experiments. With a careful look at previous studies, it can be found that in vitro unblock-block ratio was unable to correlate the tumor to muscle ratio and the success of radiolabeled peptide for in vivo tumor targeting. The introduction of modifiers’ approaches, nature of peptides, and type of chelators and co-ligands have mixed effect on the in vitro and in vivo specificity of radiolabeled peptides.


Author(s):  
Lidia Bellés ◽  
Andrea Dimiziani ◽  
Stergios Tsartsalis ◽  
Philippe Millet ◽  
François R Herrmann ◽  
...  

Abstract Background Impulsivity and novelty preference are both associated with an increased propensity to develop addiction-like behaviors, but their relationship and respective underlying dopamine (DA) underpinnings are not fully elucidated. Methods We evaluated a large cohort (n = 49) of Roman high- and low-avoidance rats using single photon emission computed tomography to concurrently measure in vivo striatal D2/3 receptor (D2/3R) availability and amphetamine (AMPH)-induced DA release in relation to impulsivity and novelty preference using a within-subject design. To further examine the DA-dependent processes related to these traits, midbrain D2/3-autoreceptor levels were measured using ex vivo autoradiography in the same animals. Results We replicated a robust inverse relationship between impulsivity, as measured with the 5-choice serial reaction time task, and D2/3R availability in ventral striatum and extended this relationship to D2/3R levels measured in dorsal striatum. Novelty preference was positively related to impulsivity and showed inverse associations with D2/3R availability in dorsal striatum and ventral striatum. A high magnitude of AMPH-induced DA release in striatum predicted both impulsivity and novelty preference, perhaps owing to the diminished midbrain D2/3-autoreceptor availability measured in high-impulsive/novelty-preferring Roman high-avoidance animals that may amplify AMPH effect on DA transmission. Mediation analyses revealed that while D2/3R availability and AMPH-induced DA release in striatum are both significant predictors of impulsivity, the effect of striatal D2/3R availability on novelty preference is fully mediated by evoked striatal DA release. Conclusions Impulsivity and novelty preference are related but mediated by overlapping, yet dissociable, DA-dependent mechanisms in striatum that may interact to promote the emergence of an addiction-prone phenotype.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 770
Author(s):  
Patrick M. Perrigue ◽  
Richard A. Murray ◽  
Angelika Mielcarek ◽  
Agata Henschke ◽  
Sergio E. Moya

Nanoformulations offer multiple advantages over conventional drug delivery, enhancing solubility, biocompatibility, and bioavailability of drugs. Nanocarriers can be engineered with targeting ligands for reaching specific tissue or cells, thus reducing the side effects of payloads. Following systemic delivery, nanocarriers must deliver encapsulated drugs, usually through nanocarrier degradation. A premature degradation, or the loss of the nanocarrier coating, may prevent the drug’s delivery to the targeted tissue. Despite their importance, stability and degradation of nanocarriers in biological environments are largely not studied in the literature. Here we review techniques for tracing the fate of nanocarriers, focusing on nanocarrier degradation and drug release both intracellularly and in vivo. Intracellularly, we will discuss different fluorescence techniques: confocal laser scanning microscopy, fluorescence correlation spectroscopy, lifetime imaging, flow cytometry, etc. We also consider confocal Raman microscopy as a label-free technique to trace colocalization of nanocarriers and drugs. In vivo we will consider fluorescence and nuclear imaging for tracing nanocarriers. Positron emission tomography and single-photon emission computed tomography are used for a quantitative assessment of nanocarrier and payload biodistribution. Strategies for dual radiolabelling of the nanocarriers and the payload for tracing carrier degradation, as well as the efficacy of the payload delivery in vivo, are also discussed.


2018 ◽  
Vol 78 (2) ◽  
pp. 218-227 ◽  
Author(s):  
Janine Schniering ◽  
Martina Benešová ◽  
Matthias Brunner ◽  
Stephanie Haller ◽  
Susan Cohrs ◽  
...  

ObjectiveTo evaluate integrin αvβ3 (alpha-v-beta-3)-targeted and somatostatin receptor 2 (SSTR2)-targeted nuclear imaging for the visualisation of interstitial lung disease (ILD).MethodsThe pulmonary expression of integrin αvβ3 and SSTR2 was analysed in patients with different forms of ILD as well as in bleomycin (BLM)-treated mice and respective controls using immunohistochemistry. Single photon emission CT/CT (SPECT/CT) was performed on days 3, 7 and 14 after BLM instillation using the integrin αvβ3-targeting 177Lu-DOTA-RGD and the SSTR2-targeting 177Lu-DOTA-NOC radiotracer. The specific pulmonary accumulation of the radiotracers over time was assessed by in vivo and ex vivo SPECT/CT scans and by biodistribution studies.ResultsExpression of integrin αvβ3 and SSTR2 was substantially increased in human ILD regardless of the subtype. Similarly, in lungs of BLM-challenged mice, but not of controls, both imaging targets were stage-specifically overexpressed. While integrin αvβ3 was most abundantly upregulated on day 7, the inflammatory stage of BLM-induced lung fibrosis, SSTR2 expression peaked on day 14, the established fibrotic stage. In agreement with the findings on tissue level, targeted nuclear imaging using SPECT/CT specifically detected both imaging targets ex vivo and in vivo, and thus visualised different stages of experimental ILD.ConclusionOur preclinical proof-of-concept study suggests that specific visualisation of molecular processes in ILD by targeted nuclear imaging is feasible. If transferred into clinics, where imaging is considered an integral part of patients’ management, the additional information derived from specific imaging tools could represent a first step towards precision medicine in ILD.


1994 ◽  
Vol 14 (3) ◽  
pp. 453-465 ◽  
Author(s):  
Marc Laruelle ◽  
Anissa Abi-Dargham ◽  
Mohammed S. AI-Tikriti ◽  
Ronald M. Baldwin ◽  
Yolanda Zea-Ponce ◽  
...  

In vivo benzodiazepine receptor equilibrium dissociation constant, KD, and maximum number of binding sites, Bmax, were measured by single photon emission computerized tomography (SPECT) in three baboons. Animals were injected with a bolus followed by a constant i.v. infusion of the high affinity benzodiazepine ligand [123I]iomazenil. Plasma steady-state concentration and receptor–ligand equilibrium were reached within 2 and 3 h, respectively, and were sustained for the duration (4–9 h) of the experiments (n = 15). At the end of the experiments, a receptor saturating dose of flumazenil (0.2 mg/kg) was injected to measure nondisplaceable activity. Experiments were carried out at various levels of specific activity, and Scatchard analysis was performed for derivation of the KD (0.59 ± 0.09 n M) and Bmax (from 126 n M in the occipital region to 68 n M in the striatum). Two animals were killed and [125I]iomazenil Bmax and KD were measured at 22 and 37°C on occipital homogenate membranes. In vitro values of Bmax (114 ± 33 n M) and 37°C KD (0.66 ± 0.16 n M) were in good agreement with in vivo values measured by SPECT. This study demonstrates that SPECT can be used to quantify central neuroreceptors density and affinity.


Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 145
Author(s):  
Sergey Gavrilov ◽  
Anatoly Karalkin ◽  
Nadezhda Mishakina ◽  
Oksana Efremova ◽  
Anastasia Grishenkova

The causes of chronic pelvic pain (CPP) in patients with pelvic venous disorder (PeVD) are not completely understood. Various authors consider dilation of pelvic veins (PeVs) and pelvic venous reflux (PVR) as the main mechanisms underlying symptomatic forms of PeVD. The aim of this study was to assess relationships of pelvic vein dilation and PVR with clinical manifestations of PeVD. This non-randomized comparative cohort study included 80 female patients with PeVD who were allocated into two groups with symptomatic (n = 42) and asymptomatic (n = 38) forms of the disease. All patients underwent duplex scanning and single-photon emission computed tomography (SPECT) of PeVs with in vivo labeled red blood cells (RBCs). The PeV diameters, the presence, duration and pattern of PVR in the pelvic veins, as well as the coefficient of pelvic venous congestion (CPVC) were assessed. Two groups did not differ significantly in pelvic vein diameters (gonadal veins (GVs): 7.7 ± 1.3 vs. 8.5 ± 0.5 mm; parametrial veins (PVs): 9.8 ± 0.9 vs. 9.5 ± 0.9 mm; and uterine veins (UVs): 5.6 ± 0.2 vs. 5.5 ± 0.6 mm). Despite this, CPVC was significantly higher in symptomatic versus asymptomatic patients (1.9 ± 0.4 vs. 0.7 ± 0.2, respectively; p = 0.008). Symptomatic patients had type II or III PVR, while asymptomatic patients had type I PVR. The reflux duration was found to be significantly greater in symptomatic versus asymptomatic patients (median and interquartile range: 4.0 [3.0; 5.0] vs. 1.0 [0; 2.0] s for GVs, p = 0.008; 4.0 [3.0; 5.0] vs. 1.1 [1.0; 2.0] s for PVs, p = 0.007; and 2.0 [2.0; 3.0] vs. 1.0 [1.0; 2.0] s for UVs, p = 0.04). Linear correlation analysis revealed a strong positive relationship (Pearson’s r = 0.78; p = 0.007) of CPP with the PVR duration but not with vein diameter. The grade of PeV dilation may not be a determining factor in CPP development in patients with PeVD. The presence and duration of reflux in the pelvic veins were found to be predictors of the development of symptomatic PeVD.


2002 ◽  
Vol 22 (9) ◽  
pp. 1035-1041 ◽  
Author(s):  
Brian J. Bacskai ◽  
William E. Klunk ◽  
Chester A. Mathis ◽  
Bradley T. Hyman

Alzheimer disease (AD) is an illness that can only be diagnosed with certainty with postmortem examination of brain tissue. Tissue samples from afflicted patients show neuronal loss, neurofibrillary tangles (NFTs), and amyloid-β plaques. An imaging technique that permitted in vivo detection of NFTs or amyloid-β plaques would be extremely valuable. For example, chronic imaging of senile plaques would provide a readout of the efficacy of experimental therapeutics aimed at removing these neuropathologic lesions. This review discusses the available techniques for imaging amyloid-β deposits in the intact brain, including magnetic resonance imaging, positron emission tomography, single photon emission computed tomography, and multiphoton microscopy. A variety of agents that target amyloid-β deposits specifically have been developed using one or several of these imaging modalities. The difficulty in developing these tools lies in the need for the agents to cross the blood-brain barrier while recognizing amyloid-β with high sensitivity and specificity. This review describes the progress in developing reagents suitable for in vivo imaging of senile plaques.


Sign in / Sign up

Export Citation Format

Share Document