scholarly journals Necroptosis in Pulmonary Diseases: A New Therapeutic Target

2021 ◽  
Vol 12 ◽  
Author(s):  
Lingling Wang ◽  
Ling Zhou ◽  
Yuhao Zhou ◽  
Lu Liu ◽  
Weiling Jiang ◽  
...  

In the past decades, apoptosis has been the most well-studied regulated cell death (RCD) that has essential functions in tissue homeostasis throughout life. However, a novel form of RCD called necroptosis, which requires receptor-interacting protein kinase-3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL), has recently been receiving increasing scientific attention. The phosphorylation of RIPK3 enables the recruitment and phosphorylation of MLKL, which oligomerizes and translocates to the plasma membranes, ultimately leading to plasma membrane rupture and cell death. Although apoptosis elicits no inflammatory responses, necroptosis triggers inflammation or causes an innate immune response to protect the body through the release of damage-associated molecular patterns (DAMPs). Increasing evidence now suggests that necroptosis is implicated in the pathogenesis of several human diseases such as systemic inflammation, respiratory diseases, cardiovascular diseases, neurodegenerative diseases, neurological diseases, and cancer. This review summarizes the emerging insights of necroptosis and its contribution toward the pathogenesis of lung diseases.

Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 982
Author(s):  
Samantha Sarcognato ◽  
Iris E. M. de Jong ◽  
Luca Fabris ◽  
Massimiliano Cadamuro ◽  
Maria Guido

Necroptosis is a type of regulated cell death that is increasingly being recognized as a relevant pathway in different pathological conditions. Necroptosis can occur in response to multiple stimuli, is triggered by the activation of death receptors, and is regulated by receptor-interacting protein kinases 1 and 3 and mixed-lineage kinase domain-like, which form a regulatory complex called the necrosome. Accumulating evidence suggests that necroptosis plays a complex role in cancer, which is likely context-dependent and can vary among different types of neoplasms. Necroptosis serves as an alternative mode of programmed cell death overcoming apoptosis and, as a pro-inflammatory death type, it may inhibit tumor progression by releasing damage-associated molecular patterns to elicit robust cross-priming of anti-tumor CD8+ T cells. The development of therapeutic strategies triggering necroptosis shows great potential for anti-cancer therapy. In this review, we summarize the current knowledge on necroptosis and its role in liver biliary neoplasms, underlying the potential of targeting necroptosis components for cancer treatment.


Author(s):  
Jinho Seo ◽  
Young Woo Nam ◽  
Seongmi Kim ◽  
Doo-Byoung Oh ◽  
Jaewhan Song

AbstractNecroptosis is a form of programmed necrosis that is mediated by various cytokines and pattern recognition receptors (PRRs). Cells dying by necroptosis show necrotic phenotypes, including swelling and membrane rupture, and release damage-associated molecular patterns (DAMPs), inflammatory cytokines, and chemokines, thereby mediating extreme inflammatory responses. Studies on gene knockout or necroptosis-specific inhibitor treatment in animal models have provided extensive evidence regarding the important roles of necroptosis in inflammatory diseases. The necroptosis signaling pathway is primarily modulated by activation of receptor-interacting protein kinase 3 (RIPK3), which phosphorylates mixed-lineage kinase domain-like protein (MLKL), mediating MLKL oligomerization. In the necroptosis process, these proteins are fine-tuned by posttranslational regulation via phosphorylation, ubiquitination, glycosylation, and protein–protein interactions. Herein, we review recent findings on the molecular regulatory mechanisms of necroptosis.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 627 ◽  
Author(s):  
Xuewei Zhang ◽  
Masaya Matsuda ◽  
Nobuo Yaegashi ◽  
Takeshi Nabe ◽  
Kazuyuki Kitatani

Several non-apoptotic regulated cell death pathways have been recently reported. Necroptosis, a form of necrotic-regulated cell death, is characterized by the involvement of receptor-interacting protein kinases and/or the pore-forming mixed lineage kinase domain-like protein. Recent evidence suggests a key role for lipidic molecules in the regulation of necroptosis. The purpose of this mini-review is to outline the regulation of necroptosis by sphingolipids and phospholipids.


2017 ◽  
Vol 114 (36) ◽  
pp. E7450-E7459 ◽  
Author(s):  
Shuzhen Liu ◽  
Hua Liu ◽  
Andrea Johnston ◽  
Sarah Hanna-Addams ◽  
Eduardo Reynoso ◽  
...  

Mixed-lineage kinase domain-like protein (MLKL) is essential for TNF-α–induced necroptosis. How MLKL promotes cell death is still under debate. Here we report that MLKL forms SDS-resistant, disulfide bond-dependent polymers during necroptosis in both human and mouse cells. MLKL polymers are independent of receptor-interacting protein kinase 1 and 3 (RIPK1/RIPK3) fibers. Large MLKL polymers are more than 2 million Da and are resistant to proteinase K digestion. MLKL polymers are fibers 5 nm in diameter under electron microscopy. Furthermore, the recombinant N-terminal domain of MLKL forms amyloid-like fibers and binds Congo red dye. MLKL mutants that cannot form polymers also fail to induce necroptosis efficiently. Finally, the compound necrosulfonamide conjugates cysteine 86 of human MLKL and blocks MLKL polymer formation and subsequent cell death. These results demonstrate that disulfide bond-dependent, amyloid-like MLKL polymers are necessary and sufficient to induce necroptosis.


2018 ◽  
Vol 11 (546) ◽  
pp. eaao1716 ◽  
Author(s):  
Akshay A. D’Cruz ◽  
Mary Speir ◽  
Meghan Bliss-Moreau ◽  
Sylvia Dietrich ◽  
Shu Wang ◽  
...  

Neutrophil extracellular trap (NET) formation can generate short-term, functional anucleate cytoplasts and trigger loss of cell viability. We demonstrated that the necroptotic cell death effector mixed lineage kinase domain–like (MLKL) translocated from the cytoplasm to the plasma membrane and stimulated downstream NADPH oxidase–independent ROS production, loss of cytoplasmic granules, breakdown of the nuclear membrane, chromatin decondensation, histone hypercitrullination, and extrusion of bacteriostatic NETs. This process was coordinated by receptor-interacting protein kinase-1 (RIPK1), which activated the caspase-8–dependent apoptotic or RIPK3/MLKL-dependent necroptotic death of mouse and human neutrophils. Genetic deficiency of RIPK3 and MLKL prevented NET formation but did not prevent cell death, which was because of residual caspase-8–dependent activity. Peptidylarginine deiminase 4 (PAD4) was activated downstream of RIPK1/RIPK3/MLKL and was required for maximal histone hypercitrullination and NET extrusion. This work defines a distinct signaling network that activates PAD4-dependent NET release for the control of methicillin-resistant Staphylococcus aureus (MRSA) infection.


Author(s):  
Matthias Kist ◽  
László G. Kőműves ◽  
Tatiana Goncharov ◽  
Debra L. Dugger ◽  
Charles Yu ◽  
...  

Abstract Receptor-interacting protein 1 (RIP1; RIPK1) is a key regulator of multiple signaling pathways that mediate inflammatory responses and cell death. TNF-TNFR1 triggered signaling complex formation, subsequent NF-κB and MAPK activation and induction of cell death involve RIPK1 ubiquitination at several lysine residues including Lys376 and Lys115. Here we show that mutating the ubiquitination site K376 of RIPK1 (K376R) in mice activates cell death resulting in embryonic lethality. In contrast to Ripk1K376R/K376R mice, Ripk1K115R/K115R mice reached adulthood and showed slightly higher responsiveness to TNF-induced death. Cell death observed in Ripk1K376R/K376R embryos relied on RIPK1 kinase activity as administration of RIPK1 inhibitor GNE684 to pregnant heterozygous mice effectively blocked cell death and prolonged survival. Embryonic lethality of Ripk1K376R/K376R mice was prevented by the loss of TNFR1, or by simultaneous deletion of caspase-8 and RIPK3. Interestingly, elimination of the wild-type allele from adult Ripk1K376R/cko mice was tolerated. However, adult Ripk1K376R/cko mice were exquisitely sensitive to TNF-induced hypothermia and associated lethality. Absence of the K376 ubiquitination site diminished K11-linked, K63-linked, and linear ubiquitination of RIPK1, and promoted the assembly of death-inducing cellular complexes, suggesting that multiple ubiquitin linkages contribute to the stability of the RIPK1 signaling complex that stimulates NF-κB and MAPK activation. In contrast, mutating K115 did not affect RIPK1 ubiquitination or TNF stimulated NF-κB and MAPK signaling. Overall, our data indicate that selective impairment of RIPK1 ubiquitination can lower the threshold for RIPK1 activation by TNF resulting in cell death and embryonic lethality.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1313
Author(s):  
Man Wang ◽  
Shuai Jiang ◽  
Yinfeng Zhang ◽  
Peifeng Li ◽  
Kun Wang

Cancer is a category of diseases involving abnormal cell growth with the potential to invade other parts of the body. Chemotherapy is the most widely used first-line treatment for multiple forms of cancer. Chemotherapeutic agents act via targeting the cellular apoptotic pathway. However, cancer cells usually acquire chemoresistance, leading to poor outcomes in cancer patients. For that reason, it is imperative to discover other cell death pathways for improved cancer intervention. Pyroptosis is a new form of programmed cell death that commonly occurs upon pathogen invasion. Pyroptosis is marked by cell swelling and plasma membrane rupture, which results in the release of cytosolic contents into the extracellular space. Currently, pyroptosis is proposed to be an alternative mode of cell death in cancer treatment. Accumulating evidence shows that the key components of pyroptotic cell death pathways, including inflammasomes, gasdermins and pro-inflammatory cytokines, are involved in the initiation and progression of cancer. Interfering with pyroptotic cell death pathways may represent a promising therapeutic option for cancer management. In this review, we describe the current knowledge regarding the biological significance of pyroptotic cell death pathways in cancer pathogenesis and also discuss their potential therapeutic utility.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Bartosz Wiernicki ◽  
Hanne Dubois ◽  
Yulia Y. Tyurina ◽  
Behrouz Hassannia ◽  
Hülya Bayir ◽  
...  

Abstract Lipid peroxidation (LPO) drives ferroptosis execution. However, LPO has been shown to contribute also to other modes of regulated cell death (RCD). To clarify the role of LPO in different modes of RCD, we studied in a comprehensive approach the differential involvement of reactive oxygen species (ROS), phospholipid peroxidation products, and lipid ROS flux in the major prototype modes of RCD viz. apoptosis, necroptosis, ferroptosis, and pyroptosis. LC-MS oxidative lipidomics revealed robust peroxidation of three classes of phospholipids during ferroptosis with quantitative predominance of phosphatidylethanolamine species. Incomparably lower amounts of phospholipid peroxidation products were found in any of the other modes of RCD. Nonetheless, a strong increase in lipid ROS levels was detected in non-canonical pyroptosis, but only during cell membrane rupture. In contrast to ferroptosis, lipid ROS apparently was not involved in non-canonical pyroptosis execution nor in the release of IL-1β and IL-18, while clear dependency on CASP11 and GSDMD was observed. Our data demonstrate that ferroptosis is the only mode of RCD that depends on excessive phospholipid peroxidation for its cytotoxicity. In addition, our results also highlight the importance of performing kinetics and using different methods to monitor the occurrence of LPO. This should open the discussion on the implication of particular LPO events in relation to different modes of RCD.


2019 ◽  
Vol 317 (3) ◽  
pp. C584-C599
Author(s):  
Kurt D. Marshall ◽  
Paula J. Klutho ◽  
Lihui Song ◽  
Maike Krenz ◽  
Christopher P. Baines

Opening of the mitochondrial permeability transition (MPT) pore leads to necrotic cell death. Excluding cyclophilin D (CypD), the makeup of the MPT pore remains conjecture. The purpose of these experiments was to identify novel MPT modulators by analyzing proteins that associate with CypD. We identified Fas-activated serine/threonine phosphoprotein kinase domain-containing protein 1 (FASTKD1) as a novel CypD interactor. Overexpression of FASTKD1 protected mouse embryonic fibroblasts (MEFs) against oxidative stress-induced reactive oxygen species (ROS) production and cell death, whereas depletion of FASTKD1 sensitized them. However, manipulation of FASTKD1 levels had no effect on MPT responsiveness, Ca2+-induced cell death, or antioxidant capacity. Moreover, elevated FASTKD1 levels still protected against oxidative stress in CypD-deficient MEFs. FASTKD1 overexpression decreased Complex-I-dependent respiration and ΔΨm in MEFs, effects that were abrogated in CypD-null cells. Additionally, overexpression of FASTKD1 in MEFs induced mitochondrial fragmentation independent of CypD, activation of Drp1, and inhibition of autophagy/mitophagy, whereas knockdown of FASTKD1 had the opposite effect. Manipulation of FASTKD1 expression also modified oxidative stress-induced caspase-3 cleavage yet did not alter apoptotic death. Finally, the effects of FASTKD1 overexpression on oxidative stress-induced cell death and mitochondrial morphology were recapitulated in cultured cardiac myocytes. Together, these data indicate that FASTKD1 supports mitochondrial homeostasis and plays a critical protective role against oxidant-induced death.


2017 ◽  
Vol 114 (13) ◽  
pp. E2786-E2795 ◽  
Author(s):  
Lisa P. Daley-Bauer ◽  
Linda Roback ◽  
Lynsey N. Crosby ◽  
A. Louise McCormick ◽  
Yanjun Feng ◽  
...  

The complex interplay between caspase-8 and receptor-interacting protein (RIP) kinase RIP 3 (RIPK3) driving extrinsic apoptosis and necroptosis is not fully understood. Murine cytomegalovirus triggers both apoptosis and necroptosis in infected cells; however, encoded inhibitors of caspase-8 activity (M36) and RIP3 signaling (M45) suppress these antiviral responses. Here, we report that this virus activates caspase-8 in macrophages to trigger apoptosis that gives rise to secondary necroptosis. Infection with double-mutant ΔM36/M45mutRHIM virus reveals a signaling pattern in which caspase-8 activates caspase-3 to drive apoptosis with subsequent RIP3-dependent activation of mixed lineage kinase domain-like (MLKL) leading to necroptosis. This combined cell death signaling is highly inflammatory, greater than either apoptosis induced by ΔM36 or necroptosis induced by M45mutRHIM virus. IL-6 production by macrophages is dramatically increased during double-mutant virus infection and correlates with faster antiviral responses in the host. Collaboratively, M36 and M45 target caspase-8 and RIP3 pathways together to suppress this proinflammatory cell death. This study reveals the effect of antiviral programmed cell death pathways on inflammation, shows that caspase-8 activation may go hand-in-hand with necroptosis in macrophages, and revises current understanding of independent and collaborative functions of M36 and M45 in blocking apoptotic and necroptotic cell death responses.


Sign in / Sign up

Export Citation Format

Share Document