Thromboxane A2 Synthase and Thromboxane Receptor Deletion Reduces Ischaemia/Reperfusion-Evoked Inflammation, Apoptosis, Autophagy and Pyroptosis

2019 ◽  
Vol 120 (02) ◽  
pp. 329-343 ◽  
Author(s):  
Tsung-Hung Chueh ◽  
Yu-Hsiuan Cheng ◽  
Kuo-Hsin Chen ◽  
Chiang-Ting Chien

Abstract Aim Enhancement of thromboxane A2 (TXA2) synthase (TXAS) activity, TXA2 release, and thromboxane prostanoid (TP) receptor activation leads to vasoconstriction and oxidative injury. We explored whether genetic deletion of TXAS/TXA2/TP signalling may reduce renal ischaemia/reperfusion (I/R) injury in mice. Materials and Methods Renal haemodynamics and function were evaluated in TXAS+/+TP+/+ (wild-type, WT), TXAS−/− (TXS−/−), TP−/− and TXAS−/−TP−/− (double knockout, dKO) mice in response to intravenous TXA2 mimetic-U46619 and 45-minute renal ischaemia and 4-hour reperfusion injury. We examined renal TXAS and TP expression, blood urea nitrogen (BUN) and creatinine, reactive oxygen species (ROS) amount, pro-inflammatory cytokines and pathophysiologic mechanisms, including apoptosis, autophagy and pyroptosis under I/R injury. Results Renal I/R enhanced the levels of TXAS, TP, nuclear factor-κB, nicotinamide adenine dinucleotide phosphate oxidase gp91, Bax/Bcl-2/caspase-3/apoptosis, Beclin-1/LC3-II/autophagy, caspase-1/gasdermin D/interleukin-1β/pyroptosis, renal thromboxane B2 (TXB2) concentration, ROS amount, plasma BUN, creatinine and TXB2 and decreased renal endothelial nitric oxide synthase expression in WT mice. All these enhanced parameters were significantly decreased in three KO mice. Intravenous U46619 significantly decreased renal microcirculation and enhanced gp91 and Bax/Bcl-2 in WT and TXS−/− but not TP−/− in dKO mice. I/R significantly decreased renal microcirculation in all mice; however, the time for recovery to baseline renal blood flow level was significantly shortened in TXS−/−, TP−/−and dKO mice versus WT mice. Blockade of TXAS/TP signalling attenuated I/R-enhanced pro-inflammatory cytokine profile. Conclusion Blockade of TXAS/TXA2/TP signalling confers renal protection against I/R injury through the actions of anti-oxidation, anti-inflammation, anti-apoptosis, anti-autophagy and anti-pyroptosis.

2018 ◽  
Vol 118 (11) ◽  
pp. 1982-1996 ◽  
Author(s):  
Chih-Yao Chiang ◽  
Chen-Yen Chien ◽  
Wei-Yin Qiou ◽  
Christopher Chang ◽  
I-Shing Yu ◽  
...  

Objective Activation of thromboxane A2 synthase (TXAS)/thromboxane A2 (TXA2)/thromboxane prostanoid (TP) receptor leads to arterial constriction, platelet aggregation and vascular injury. We attempted to characterize the microvascular dysfunction in ischaemia/reperfusion injury using genetically modified TXAS−/−, TP−/− and TXAS−/−TP−/− mice. Approach and Results The cardiac micro-circulation and electrocardiograms were evaluated from B6, TXAS−/−, TP−/− and TXAS−/−TP−/− mice in response to intravenous saline, endothelin-1, U46619 (a TXA2 agonist) and myocardial ischaemia/reperfusion injury. Cardiac function was investigated with myocardial permeability, the troponin I concentration and the infarct size. Myocardial TXAS, TP, endothelial nitric oxide (NO) synthase (eNOS), nicotinamide adenine dinucleotide phosphate oxidase 4 (NOx4), 4-hydroxynonenal, interleukin (IL)-1β, cell apoptosis, coronary effluent thromboxane B2 (TXB2) and superoxide anions (O2 −) and NO concentrations were measured. Mice mesenteric reactivity in response to various drugs was assessed by wire myography. In vivo fluorescent platelet adhesiveness to the mesenteric arterial endothelium after FeCl3 stimulation was examined. In B6 mice, ischaemia/reperfusion significantly increased levels of ST-segment elevation, myocardial TXAS, TP, NOx4, IL-1β, apoptosis, coronary endothelin-1, TXB2, O2 − release and the infarct size, with concomitant decreases in eNOS, NO concentrations and cardiac micro-circulation. These effects were remarkably depressed in TXAS−/−, TP−/− and TXAS−/−TP−/− mice. Aspirin treatment or depletion of the TXAS, TP or TXAS/TP gene significantly attenuated the exaggerated vascular reactivity by vasoconstrictors and vasodilators and efficiently reduced platelet adhesion to the mesenteric endothelium under FeCl3 stimulation. Conclusion Inhibiting TXAS/TXA2/TP signalling confers microvascular protection against oxidative injury in both cardiac and mesenteric arteries.


2021 ◽  
pp. 1-9
Author(s):  
Hongmei Zhao ◽  
Yun Qiu ◽  
Yichen Wu ◽  
Hong Sun ◽  
Sumin Gao

<b><i>Introduction/Aims:</i></b> Hydrogen sulfide (H<sub>2</sub>S) is considered to be the third most important endogenous gasotransmitter in organisms. GYY4137 is a long-acting donor for H<sub>2</sub>S, a gas transmitter that has been shown to prevent multi-organ damage in animal studies. We previously reported the effect of GYY4137 on cardiac ischaemia reperfusion injury (IRI) in diabetic mice. However, the role and mechanism of GYY4137 in renal IRI are poorly understood. The aims of this study were to determine whether GYY4137 can effectively alleviate the injury induced by renal ischaemia reperfusion and to explore its possible mechanism. <b><i>Methods:</i></b> Mice received right nephrectomy and clipping of the left renal pedicle for 45 min. GYY4137 was administered by intraperitoneal injection for 2 consecutive days before the operation. The model of hypoxia/reoxygenation injury was established in HK-2 cells, which were pre-treated with or without GYY4137. Renal histology, function, apoptosis, and oxidative stress were measured. Western blot was used to measure the target ­protein after renal IRI. <b><i>Results:</i></b> The results indicated that GYY4137 had a clear protective effect on renal IRI as reflected by the attenuation of renal dysfunction, renal tubule injury, and apoptosis. Moreover, GYY4137 remarkably reduced renal IRI-induced oxidative stress. GYY4137 significantly elevated the nuclear translocation of nuclear factor-erythroid-2-related factor 2 (Nrf2) and the expression of antioxidant enzymes regulated by Nrf2, including SOD, HO-1, and NQO-1. <b><i>Conclusions:</i></b> GYY4137 alleviates ischaemia reperfusion-induced renal injury through activating the antioxidant effect mediated by Nrf2 signalling.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Javier Emperador-Melero ◽  
Man Yan Wong ◽  
Shan Shan H. Wang ◽  
Giovanni de Nola ◽  
Hajnalka Nyitrai ◽  
...  

AbstractThe active zone of a presynaptic nerve terminal defines sites for neurotransmitter release. Its protein machinery may be organized through liquid–liquid phase separation, a mechanism for the formation of membrane-less subcellular compartments. Here, we show that the active zone protein Liprin-α3 rapidly and reversibly undergoes phase separation in transfected HEK293T cells. Condensate formation is triggered by Liprin-α3 PKC-phosphorylation at serine-760, and RIM and Munc13 are co-recruited into membrane-attached condensates. Phospho-specific antibodies establish phosphorylation of Liprin-α3 serine-760 in transfected cells and mouse brain tissue. In primary hippocampal neurons of newly generated Liprin-α2/α3 double knockout mice, synaptic levels of RIM and Munc13 are reduced and the pool of releasable vesicles is decreased. Re-expression of Liprin-α3 restored these presynaptic defects, while mutating the Liprin-α3 phosphorylation site to abolish phase condensation prevented this rescue. Finally, PKC activation in these neurons acutely increased RIM, Munc13 and neurotransmitter release, which depended on the presence of phosphorylatable Liprin-α3. Our findings indicate that PKC-mediated phosphorylation of Liprin-α3 triggers its phase separation and modulates active zone structure and function.


1994 ◽  
Vol 269 (4) ◽  
pp. 2943-2952
Author(s):  
L.F. Brass ◽  
S. Pizarro ◽  
M. Ahuja ◽  
E. Belmonte ◽  
N. Blanchard ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 850
Author(s):  
María Ángeles Martín ◽  
Sonia Ramos

Flavanols are natural occurring polyphenols abundant in fruits and vegetables to which have been attributed to beneficial effects on health, and also against metabolic diseases, such as diabetes, obesity and metabolic syndrome. These positive properties have been associated to the modulation of different molecular pathways, and importantly, to the regulation of immunological reactions (pro-inflammatory cytokines, chemokines, adhesion molecules, nuclear factor-κB [NF-κB], inducible enzymes), and the activity of cells of the immune system. In addition, flavanols can modulate the composition and function of gut microbiome in a prebiotic-like manner, resulting in the positive regulation of metabolic pathways and immune responses, and reduction of low-grade chronic inflammation. Moreover, the biotransformation of flavanols by gut bacteria increases their bioavailability generating a number of metabolites with potential to affect human metabolism, including during metabolic diseases. However, the exact mechanisms by which flavanols act on the microbiota and immune system to influence health and disease remain unclear, especially in humans where these connections have been scarcely explored. This review seeks to summarize recent advances on the complex interaction of flavanols with gut microbiota, immunity and inflammation focus on metabolic diseases.


2014 ◽  
Vol 112 (2) ◽  
pp. 467-479 ◽  
Author(s):  
Adriana Galvan ◽  
Xing Hu ◽  
Karen S. Rommelfanger ◽  
Jean-Francois Pare ◽  
Zafar U. Khan ◽  
...  

The subthalamic nucleus (STN) receives a dopaminergic innervation from the substantia nigra pars compacta, but the role of this projection remains poorly understood, particularly in primates. To address this issue, we used immuno-electron microscopy to localize D1, D2, and D5 dopamine receptors in the STN of rhesus macaques and studied the electrophysiological effects of activating D1-like or D2-like receptors in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated parkinsonian monkeys. Labeling of D1 and D2 receptors was primarily found presynaptically, on preterminal axons and putative glutamatergic and GABAergic terminals, while D5 receptors were more significantly expressed postsynaptically, on dendritic shafts of STN neurons. The electrical spiking activity of STN neurons, recorded with standard extracellular recording methods, was studied before, during, and after intra-STN administration of the dopamine D1-like receptor agonist SKF82958, the D2-like receptor agonist quinpirole, or artificial cerebrospinal fluid (control injections). In normal animals, administration of SKF82958 significantly reduced the spontaneous firing but increased the rate of intraburst firing and the proportion of pause-burst sequences of firing. Quinpirole only increased the proportion of such pause-burst sequences in STN neurons of normal monkeys. In MPTP-treated monkeys, the D1-like receptor agonist also reduced the firing rate and increased the proportion of pause-burst sequences, while the D2-like receptor agonist did not change any of the chosen descriptors of the firing pattern of STN neurons. Our data suggest that dopamine receptor activation can directly modulate the electrical activity of STN neurons by pre- and postsynaptic mechanisms in both normal and parkinsonian states, predominantly via activation of D1 receptors.


2021 ◽  
Vol 22 (12) ◽  
pp. 6245
Author(s):  
Santiago Milla-Navarro ◽  
Ariadna Diaz-Tahoces ◽  
Isabel Ortuño-Lizarán ◽  
Eduardo Fernández ◽  
Nicolás Cuenca ◽  
...  

One of the causes of nervous system degeneration is an excess of glutamate released upon several diseases. Glutamate analogs, like N-methyl-DL-aspartate (NMDA) and kainic acid (KA), have been shown to induce experimental retinal neurotoxicity. Previous results have shown that NMDA/KA neurotoxicity induces significant changes in the full field electroretinogram response, a thinning on the inner retinal layers, and retinal ganglion cell death. However, not all types of retinal neurons experience the same degree of injury in response to the excitotoxic stimulus. The goal of the present work is to address the effect of intraocular injection of different doses of NMDA/KA on the structure and function of several types of retinal cells and their functionality. To globally analyze the effect of glutamate receptor activation in the retina after the intraocular injection of excitotoxic agents, a combination of histological, electrophysiological, and functional tools has been employed to assess the changes in the retinal structure and function. Retinal excitotoxicity caused by the intraocular injection of a mixture of NMDA/KA causes a harmful effect characterized by a great loss of bipolar, amacrine, and retinal ganglion cells, as well as the degeneration of the inner retina. This process leads to a loss of retinal cell functionality characterized by an impairment of light sensitivity and visual acuity, with a strong effect on the retinal OFF pathway. The structural and functional injury suffered by the retina suggests the importance of the glutamate receptors expressed by different types of retinal cells. The effect of glutamate agonists on the OFF pathway represents one of the main findings of the study, as the evaluation of the retinal lesions caused by excitotoxicity could be specifically explored using tests that evaluate the OFF pathway.


Sign in / Sign up

Export Citation Format

Share Document