scholarly journals Biomedical Uses of Sulfobetaine-Based Zwitterionic Materials

2020 ◽  
Vol 02 (04) ◽  
pp. 342-357
Author(s):  
Francesco Zaccarian ◽  
Matthew B. Baker ◽  
Matthew J. Webber

Protein fouling can render a biomedical device dysfunctional, and also serves to nucleate the foreign body reaction to an implanted material. Hydrophilic coatings have emerged as a commonly applied route to combat interface-mediated complications and promote device longevity and limited inflammatory response. While polyethylene glycol has received a majority of the attention in this regard, coatings based on zwitterionic moieties have been more recently explored. Sulfobetaines in particular constitute one such class of zwitterions explored for use in mitigating surface fouling, and have been shown to reduce protein adsorption, limit cellular adhesion, and promote increased functional lifetimes and limited inflammatory responses when applied to implanted materials and devices. Here, we present a focused review of the literature surrounding sulfobetaine, beginning with an understanding of its chemistry and the methods by which it is applied to the surface of a biomedical device in molecular and polymeric forms, and then advancing to the many early demonstrations of function in a variety of biomedical applications. Finally, we provide some insights into the benefits and challenges presented by its use, as well as some outlook on the future prospects for using this material to improve biomedical device practice by addressing interface-mediated complications.

Small ◽  
2021 ◽  
pp. 2100946
Author(s):  
Beibei Lu ◽  
Zhenye Zhu ◽  
Biyuan Ma ◽  
Wei Wang ◽  
Rongshu Zhu ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Udisha Singh ◽  
Vinod Morya ◽  
Bhaskar Datta ◽  
Chinmay Ghoroi ◽  
Dhiraj Bhatia

Of the multiple areas of applications of DNA nanotechnology, stimuli-responsive nanodevices have emerged as an elite branch of research owing to the advantages of molecular programmability of DNA structures and stimuli-responsiveness of motifs and DNA itself. These classes of devices present multiples areas to explore for basic and applied science using dynamic DNA nanotechnology. Herein, we take the stake in the recent progress of this fast-growing sub-area of DNA nanotechnology. We discuss different stimuli, motifs, scaffolds, and mechanisms of stimuli-responsive behaviours of DNA nanodevices with appropriate examples. Similarly, we present a multitude of biological applications that have been explored using DNA nanodevices, such as biosensing, in vivo pH-mapping, drug delivery, and therapy. We conclude by discussing the challenges and opportunities as well as future prospects of this emerging research area within DNA nanotechnology.


Author(s):  
Amir Mosavi ◽  
Sina Faizollahzadeh Ardabili ◽  
Shahabodin Shamshirband

Electricity demand prediction is vital for energy production management and proper exploitation of the present resources. Recently, several novel machine learning (ML) models have been employed for electricity demand prediction to estimate the future prospects of the energy requirements. The main objective of this study is to review the various ML models applied for electricity demand prediction. Through a novel search and taxonomy, the most relevant original research articles in the field are identified and further classified according to the ML modeling technique, perdition type, and the application area. A comprehensive review of the literature identifies the major ML models, their applications and a discussion on the evaluation of their performance. This paper further makes a discussion on the trend and the performance of the ML models. As the result, this research reports an outstanding rise in the accuracy, robustness, precision and the generalization ability of the prediction models using the hybrid and ensemble ML algorithms.


Author(s):  
Jeffry L. White ◽  
G.H. Massiha

<p>Women make up 47% of the total U.S. workforce, but are less represented in engineering, computer sciences, and the physical sciences. In addition, race and ethnicity are salient factors and minority women comprise fewer than 1 in 10 scientist or engineer. In this paper, a review of the literature is under taken that explores the many challenges women encounter when pursing a career in the sciences. It includes a review of the national landscape and discussion of the guiding general retention theories. Finally it proposes a conceptual framework for persistence and proffers a number of research questions designed to delve deeper into the under representation phenomenon.</p>


2019 ◽  
Vol 24 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Jenna Wahbeh ◽  
Sarah Milkowski

The use of hydrazones presents an opportunity for enhancing drug delivery through site-specific drug release, including areas such as tumor tissue or thrombosis. Many researchers are experimenting on how to more efficiently form these hydrazones, specifically using heat and chemical catalysts. Hydrazones respond on the pH environment or are synthesized with particular functional groups of the hydrazone and are two of the many unique features that allow for their programmed drug release. Their flexibility allows them to be relevant in a diverse range of applications, from anti-inflammatory to anticancer to acting as a chelating agent. This review paper discusses efficient ways to optimize the properties of hydrazones and their utilization in various clinical applications, including anticancer, anti-inflammatory, the prevention of platelet aggregation, and roles as chelating agents.


2019 ◽  
Vol 46 (05) ◽  
pp. 637-652
Author(s):  
Amit K. Saha ◽  
Min-Yi S. Zhen ◽  
Folarin Erogbogbo ◽  
Anand K. Ramasubramanian

AbstractNanoparticles have numerous biomedical applications including, but not limited to, targeted drug delivery, diagnostic imaging, sensors, and implants for a wide range of diseases including cancer, diabetes, heart disease, and tuberculosis. Although the mode of delivery of the nanoparticles depends on the application and the disease, the nanoparticles are often in immediate contact with the systemic circulation either because of intravenous administration or their ability to enter the bloodstream with relative ease or their longer survival time in circulation. Once in circulation, the nanoparticles may elicit unintended hemostatic and inflammatory responses, and hence the design of nanoparticles for therapeutic applications should take broad hemocompatibility concerns into consideration. In this review, we present the principles underlying the structural and functional design of various classes of nanoparticles that are currently approved by the US Food and Drug Administration, categorize these particles based on their interactions with cardiovascular tissues and ensuing adverse events, and also describe various in vitro assays that may be used evaluate their hemocompatibility.


2017 ◽  
Vol 53 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Dominic Malcolm

This article reflects on the history of the International Sociology of Sport Association and the International Review for the Sociology of Sport, and the words and deeds of previous editors, to illustrate both the perennial challenges and future prospects facing the sociology of sport. In light of neoliberal higher educational trends, and the interplay of the politics of language and knowledge in ‘post-truth’ societies, it explores how the sociology of sport may respond to the contemporaneous crisis in sociology. It argues that despite notable challenges ahead, there is considerable scope for sociologists of sport to exert agency and thus build on the opportunities presented to, and the many existing strengths of, the field.


2014 ◽  
Vol 5 ◽  
pp. 1432-1440 ◽  
Author(s):  
Markus Heine ◽  
Alexander Bartelt ◽  
Oliver T Bruns ◽  
Denise Bargheer ◽  
Artur Giemsa ◽  
...  

Semiconductor quantum dots (QD) and superparamagnetic iron oxide nanocrystals (SPIO) have exceptional physical properties that are well suited for biomedical applications in vitro and in vivo. For future applications, the direct injection of nanocrystals for imaging and therapy represents an important entry route into the human body. Therefore, it is crucial to investigate biological responses of the body to nanocrystals to avoid harmful side effects. In recent years, we established a system to embed nanocrystals with a hydrophobic oleic acid shell either by lipid micelles or by the amphiphilic polymer poly(maleic anhydride-alt-1-octadecene) (PMAOD). The goal of the current study is to investigate the uptake processes as well as pro-inflammatory responses in the liver after the injection of these encapsulated nanocrystals. By immunofluorescence and electron microscopy studies using wild type mice, we show that 30 min after injection polymer-coated nanocrystals are primarily taken up by liver sinusoidal endothelial cells. In contrast, by using wild type, Ldlr -/- as well as Apoe -/- mice we show that nanocrystals embedded within lipid micelles are internalized by Kupffer cells and, in a process that is dependent on the LDL receptor and apolipoprotein E, by hepatocytes. Gene expression analysis of pro-inflammatory markers such as tumor necrosis factor alpha (TNFα) or chemokine (C-X-C motif) ligand 10 (Cxcl10) indicated that 48 h after injection internalized nanocrystals did not provoke pro-inflammatory pathways. In conclusion, internalized nanocrystals at least in mouse liver cells, namely endothelial cells, Kupffer cells and hepatocytes are at least not acutely associated with potential adverse side effects, underlining their potential for biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document