Middle East Respiratory Syndrome Coronavirus

2021 ◽  
Vol 42 (06) ◽  
pp. 828-838
Author(s):  
Jaffar A. Al-Tawfiq ◽  
Esam I. Azhar ◽  
Ziad A. Memish ◽  
Alimuddin Zumla

AbstractThe past two decades have witnessed the emergence of three zoonotic coronaviruses which have jumped species to cause lethal disease in humans: severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. MERS-CoV emerged in Saudi Arabia in 2012 and the origins of MERS-CoV are not fully understood. Genomic analysis indicates it originated in bats and transmitted to camels. Human-to-human transmission occurs in varying frequency, being highest in healthcare environment and to a lesser degree in the community and among family members. Several nosocomial outbreaks of human-to-human transmission have occurred, the largest in Riyadh and Jeddah in 2014 and South Korea in 2015. MERS-CoV remains a high-threat pathogen identified by World Health Organization as a priority pathogen because it causes severe disease that has a high mortality rate, epidemic potential, and no medical countermeasures. MERS-CoV has been identified in dromedaries in several countries in the Middle East, Africa, and South Asia. MERS-CoV-2 causes a wide range of clinical presentations, although the respiratory system is predominantly affected. There are no specific antiviral treatments, although recent trials indicate that combination antivirals may be useful in severely ill patients. Diagnosing MERS-CoV early and implementation infection control measures are critical to preventing hospital-associated outbreaks. Preventing MERS relies on avoiding unpasteurized or uncooked animal products, practicing safe hygiene habits in health care settings and around dromedaries, community education and awareness training for health workers, as well as implementing effective control measures. Effective vaccines for MERS-COV are urgently needed but still under development.

mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Stanley Perlman

ABSTRACT Ten years after the severe acute respiratory syndrome epidemic, a second coronavirus, the Middle East respiratory syndrome coronavirus (MERS-CoV), has been identified as the cause of a highly lethal pneumonia in patients in the Middle East and in travelers from this region. Over the past 9 months, since the virus was first isolated, much has been learned about the biology of the virus. It is now clear that MERS-CoV is transmissible from person to person, and its close relationship with several bat coronaviruses suggests that these animals may be the ultimate source of the infection. However, many key issues need to be addressed, including identification of the proximate, presumably zoonotic, source of the infection, the prevalence of the infection in human populations, details regarding clinical and pathological features of the human infection, the establishment of a small rodent model for the infection, and the virological and immune basis for the severe disease observed in most patients. Most importantly, we do not know whether a MERS-CoV epidemic is likely or not. Infection with the virus has so far resulted in only 91 cases and 46 deaths (as of 29 July 2013), but it is nonetheless setting off alarm bells among public health officials, including Margaret Chan, Director-General of the World Health Organization, who called MERS-CoV “a threat to the entire world.” This article reviews some of the progress that has been made and discusses some of the questions that need to be answered.


2020 ◽  
Author(s):  
Lukman Olagoke ◽  
Ahmet E. Topcu

BACKGROUND COVID-19 represents a serious threat to both national health and economic systems. To curb this pandemic, the World Health Organization (WHO) issued a series of COVID-19 public safety guidelines. Different countries around the world initiated different measures in line with the WHO guidelines to mitigate and investigate the spread of COVID-19 in their territories. OBJECTIVE The aim of this paper is to quantitatively evaluate the effectiveness of these control measures using a data-centric approach. METHODS We begin with a simple text analysis of coronavirus-related articles and show that reports on similar outbreaks in the past strongly proposed similar control measures. This reaffirms the fact that these control measures are in order. Subsequently, we propose a simple performance statistic that quantifies general performance and performance under the different measures that were initiated. A density based clustering of based on performance statistic was carried out to group countries based on performance. RESULTS The performance statistic helps evaluate quantitatively the impact of COVID-19 control measures. Countries tend show variability in performance under different control measures. The performance statistic has negative correlation with cases of death which is a useful characteristics for COVID-19 control measure performance analysis. A web-based time-line visualization that enables comparison of performances and cases across continents and subregions is presented. CONCLUSIONS The performance metric is relevant for the analysis of the impact of COVID-19 control measures. This can help caregivers and policymakers identify effective control measures and reduce cases of death due to COVID-19. The interactive web visualizer provides easily digested and quick feedback to augment decision-making processes in the COVID-19 response measures evaluation. CLINICALTRIAL Not Applicable


2020 ◽  
Vol 1 (1) ◽  
pp. 1-4
Author(s):  
Richard Avoi ◽  
Syed Sharizman Syed Abdul Rahim ◽  
Mohammad Saffree Jeffree ◽  
Visweswara Rao Pasupuleti

  Since the Coronavirus disease 2019 (COVID-19) pandemic unfolded in China (Huang et al., 2020) back in December 2019, thus far, more than five million people were infected with the virus and 333,401 death were recorded worldwide (WHO, 2020b). The exponential increase in number shows that COVID-19 spreads faster compared to Severe Acute Respiratory Syndrome (SARS) or Middle East Respiratory Syndrome (MERS). A study (Zou et al., 2020) has shown that high viral loads of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are detected in symptomatic patients soon after the onset of symptoms, wherein the load content is higher in their nose than in their throat. Furthermore, the same study has revealed similar viral loads between symptomatic and asymptomatic patients. Therefore, these findings may suggest the possibility of COVID-19 transmission earlier before the onset of symptoms itself. In the early stages of the pandemic, the control measures carried out have focused on screening of symptomatic person; at the time, the whole world thought that the spread of SARS-Cov-2 would only occur through symptomatic person-to-person transmission. In comparison, transmission in SARS would happen after the onset of illness, whereby the viral loads in the respiratory tract peaked around ten days after the development of symptoms by patients (Peiris et al., 2003). However, case detection for SARS (i.e. screening of symptomatic persons) will be grossly inadequate for the current COVID-19 pandemic, thus requiring different strategies to detect those infected with SARS-CoV-2 before they develop the symptoms.


2018 ◽  
Vol 146 (11) ◽  
pp. 1343-1349 ◽  
Author(s):  
Omar B. Da'ar ◽  
Anwar E. Ahmed

AbstractThis study set out to identify and analyse trends and seasonal variations of monthly global reported cases of the Middle East respiratory syndrome coronavirus (MERS-CoV). It also made a prediction based on the reported and extrapolated into the future by forecasting the trend. Finally, the study assessed contributions of various risk factors in the reported cases. The motivation for this study is that MERS-CoV remains among the list of blueprint priority and potential pandemic diseases globally. Yet, there is a paucity of empirical literature examining trends and seasonality as the available evidence is generally descriptive and anecdotal. The study is a time series analysis using monthly global reported cases of MERS-CoV by the World Health Organisation between January 2015 and January 2018. We decomposed the series into seasonal, irregular and trend components and identified patterns, smoothened series, generated predictions and employed forecasting techniques based on linear regression. We assessed contributions of various risk factors in MERS-CoV cases over time. Successive months of the MERS-CoV cases suggest a significant decreasing trend (P = 0.026 for monthly series and P = 0.047 for Quarterly series). The MERS-CoV cases are forecast to wane by end 2018. Seasonality component of the cases oscillated below or above the baseline (the centred moving average), but no association with the series over time was noted. The results revealed contributions of risk factors such as camel contact, male, old age and being from Saudi Arabia and Middle East regions to the overall reported cases of MERS-CoV. The trend component and several risk factors for global MERS-CoV cases, including camel contact, male, age and geography/region significantly affected the series. Our statistical models appear to suggest significant predictive capacity and the findings may well inform healthcare practitioners and policymakers about the underlying dynamics that produced the globally reported MERS-CoV cases.


2016 ◽  
Vol 184 (6) ◽  
pp. 460-464 ◽  
Author(s):  
Caitlin M. Rivers ◽  
Maimuna S. Majumder ◽  
Eric T. Lofgren

2020 ◽  
Author(s):  
Michael G. Ison

Coronaviruses (CoVs) are a group of viral pathogens that infect mammals and birds. The presentation in humans is typically that of a mild upper respiratory tract infection, similar to the common cold. However, in recent years, dramatic attention has arisen for more lethal members of this viral family (e.g., severe acute respiratory syndrome [SARS-CoV], Middle East respiratory syndrome [MERS-CoV], and coronavirus disease 2019 [COVID-19]). The epidemiology, clinical presentation, diagnosis, and management of these viruses are discussed in this review. Importantly, new guideline tables from the Centers for Disease Control and Prevention, as well as the World Health Organization are provided at the conclusion of the review. This review contains 12 tables, 3 figure and 48 references. Keywords: Coronavirus, severe acute respiratory distress syndrome (SARS), Middle East respiratory syndrome (MERS), COVID-19, respiratory infection, antiviral, real-time polymerase chain reaction


2020 ◽  
Author(s):  
Michael G. Ison

Coronaviruses (CoVs) are a group of viral pathogens that infect mammals and birds. The presentation in humans is typically that of a mild upper respiratory tract infection, similar to the common cold. However, in recent years, dramatic attention has arisen for more lethal members of this viral family (e.g., severe acute respiratory syndrome [SARS-CoV], Middle East respiratory syndrome [MERS-CoV], and coronavirus disease 2019 [COVID-19]). The epidemiology, clinical presentation, diagnosis, and management of these viruses are discussed in this review. Importantly, new guideline tables from the Centers for Disease Control and Prevention, as well as the World Health Organization are provided at the conclusion of the review. This review contains 12 tables, 3 figure and 48 references. Keywords: Coronavirus, severe acute respiratory distress syndrome (SARS), Middle East respiratory syndrome (MERS), COVID-19, respiratory infection, antiviral, real-time polymerase chain reaction


2020 ◽  
Author(s):  
Michael G. Ison

Coronaviruses (CoVs) are a group of viral pathogens that infect mammals and birds. The presentation in humans is typically that of a mild upper respiratory tract infection, similar to the common cold. However, in recent years, dramatic attention has arisen for more lethal members of this viral family (e.g., severe acute respiratory syndrome [SARS-CoV], Middle East respiratory syndrome [MERS-CoV], and coronavirus disease 2019 [COVID-19]). The epidemiology, clinical presentation, diagnosis, and management of these viruses are discussed in this review. Importantly, new guideline tables from the Centers for Disease Control and Prevention, as well as the World Health Organization are provided at the conclusion of the review. This review contains 12 tables, 3 figure and 48 references. Keywords: Coronavirus, severe acute respiratory distress syndrome (SARS), Middle East respiratory syndrome (MERS), COVID-19, respiratory infection, antiviral, real-time polymerase chain reaction


2020 ◽  
Author(s):  
Michael G. Ison

Coronaviruses (CoVs) are a group of viral pathogens that infect mammals and birds. The presentation in humans is typically that of a mild upper respiratory tract infection, similar to the common cold. However, in recent years, dramatic attention has arisen for more lethal members of this viral family (e.g., severe acute respiratory syndrome [SARS-CoV], Middle East respiratory syndrome [MERS-CoV], and coronavirus disease 2019 [COVID-19]). The epidemiology, clinical presentation, diagnosis, and management of these viruses are discussed in this review. Importantly, new guideline tables from the Centers for Disease Control and Prevention, as well as the World Health Organization are provided at the conclusion of the review. This review contains 12 tables, 3 figure and 48 references. Keywords: Coronavirus, severe acute respiratory distress syndrome (SARS), Middle East respiratory syndrome (MERS), COVID-19, respiratory infection, antiviral, real-time polymerase chain reaction


2020 ◽  
Author(s):  
Michael G. Ison

Coronaviruses (CoVs) are a group of viral pathogens that infect mammals and birds. The presentation in humans is typically that of a mild upper respiratory tract infection, similar to the common cold. However, in recent years, dramatic attention has arisen for more lethal members of this viral family (e.g., severe acute respiratory syndrome [SARS-CoV], Middle East respiratory syndrome [MERS-CoV], and coronavirus disease 2019 [COVID-19]). The epidemiology, clinical presentation, diagnosis, and management of these viruses are discussed in this review. Importantly, new guideline tables from the Centers for Disease Control and Prevention, as well as the World Health Organization are provided at the conclusion of the review. This review contains 12 tables, 3 figure and 48 references. Keywords: Coronavirus, severe acute respiratory distress syndrome (SARS), Middle East respiratory syndrome (MERS), COVID-19, respiratory infection, antiviral, real-time polymerase chain reaction


Sign in / Sign up

Export Citation Format

Share Document