scholarly journals A New Perspective of COVID-19 Infection: An Epigenetics Point of View

Author(s):  
Ziya Ozturkler ◽  
Rasime Kalkan

AbstractCoronavirus disease 2019 (COVID-2019) started in Wuhan, China, in December 2019. Angiotensin-converting enzyme 2 (ACE2) receptor was one of the most important genes related to the entrance of the virus to the host. Until now, several variations have been identified in ACE2 and related transmembrane protease serine 2. Epigenetic modifications not only play an important role during the maintenance of genome and cellular homoeostasis but also for the etiopathophysiology of the virus infection. Studies showed methylation of ACE2 was changed to depend on host and age of the host during the viral infection.In this study, we provide an epigenetics point of view to the coronavirus infection. We highlight the importance of epigenetic modifications during viral replication and infection and their interaction with COVID-19 susceptibility and host viral response.

2009 ◽  
Vol 83 (11) ◽  
pp. 5451-5465 ◽  
Author(s):  
Naoko Yoshikawa ◽  
Tomoki Yoshikawa ◽  
Terence Hill ◽  
Cheng Huang ◽  
Douglas M. Watts ◽  
...  

ABSTRACT We previously reported that transgenic (Tg) mice expressing human angiotensin-converting enzyme 2 (hACE2), the receptor for severe acute respiratory syndrome coronavirus (SARS-CoV), were highly susceptible to SARS-CoV infection, which resulted in the development of disease of various severity and even death in some lineages. In this study, we further characterized and compared the pathogeneses of SARS-CoV infection in two of the most stable Tg lineages, AC70 and AC22, representing those susceptible and resistant to the lethal SARS-CoV infection, respectively. The kinetics of virus replication and the inflammatory responses within the lungs and brains, as well as the clinical and pathological outcomes, were assessed in each lineage. In addition, we generated information on lymphocyte subsets and mitogen-mediated proliferation of splenocytes. We found that while both lineages were permissive to SARS-CoV infection, causing elevated secretion of many inflammatory mediators within the lungs and brains, viral infection appeared to be more intense in AC70 than in AC22 mice, especially in the brain. Moreover, such infection was accompanied by a more profound immune suppression in the former, as evidenced by the extensive loss of T cells, compromised responses to concanavalin A stimulation, and absence of inflammatory infiltrates within the brain. We also found that CD8+ T cells were partially effective in attenuating the pathogenesis of SARS-CoV infection in lethality-resistant AC22 mice. Collectively, our data revealed a more intense viral infection and immunosuppression in AC70 mice than in AC22 mice, thereby providing us with an immunopathogenic basis for the fatal outcome of SARS-CoV infection in the AC70 mice.


Author(s):  
Pei-Hui Wang ◽  
Yun Cheng

AbstractThe ongoing outbreak of a new coronavirus (2019-nCoV) causes an epidemic of acute respiratory syndrome in humans. 2019-nCoV rapidly spread to national regions and multiple other countries, thus, pose a serious threat to public health. Recent studies show that spike (S) proteins of 2019-nCoV and SARS-CoV may use the same host cell receptor called angiotensin-converting enzyme 2 (ACE2) for entering into host cells. The affinity between ACE2 and 2019-nCoV S is much higher than ACE2 binding to SARS-CoV S protein, explaining that why 2019-nCoV seems to be more readily transmitted from the human to human. Here, we reported that ACE2 can be significantly upregulated after infection of various viruses including SARS-CoV and MERS-CoV. Basing on findings here, we propose that coronavirus infection can positively induce its cellular entry receptor to accelerate their replication and spread, thus drugs targeting ACE2 expression may be prepared for the future emerging infectious diseases caused by this cluster of viruses.


2020 ◽  
Vol 15 (5) ◽  
pp. 317-323 ◽  
Author(s):  
Mona Fani ◽  
Ali Teimoori ◽  
Shokouh Ghafari

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in several patients who traveled to Wuhan or went to a seafood wholesale market in Wuhan. The phylogenetic tree showed that SARS-CoV-2 was 96.2% identical to bat β-coronaviruses from lineage B. Also, several studies reported that SARS-CoV-2 uses the SARS-CoV receptor, angiotensin-converting enzyme 2, for entry to target cells. Lung alveolar and small intestine are potential targets for SARS-CoV-2 due to the high expression of the angiotensin-converting enzyme 2 receptor. In this review, we focused on the zoonotic β-coronaviruses and given there is no specific drug or vaccine for coronavirus disease 2019, we reviewed the literature on the therapy options for SARS and Middle East respiratory syndrome coronavirus infection, in order to discover their possible use in the treatment of SARS-CoV-2 infections.


2006 ◽  
Vol 81 (3) ◽  
pp. 1162-1173 ◽  
Author(s):  
Chien-Te K. Tseng ◽  
Cheng Huang ◽  
Patrick Newman ◽  
Nan Wang ◽  
Krishna Narayanan ◽  
...  

ABSTRACT Animal models for severe acute respiratory syndrome (SARS) coronavirus infection of humans are needed to elucidate SARS pathogenesis and develop vaccines and antivirals. We developed transgenic mice expressing human angiotensin-converting enzyme 2, a functional receptor for the virus, under the regulation of a global promoter. A transgenic lineage, designated AC70, was among the best characterized against SARS coronavirus infection, showing weight loss and other clinical manifestations before reaching 100% mortality within 8 days after intranasal infection. High virus titers were detected in the lungs and brains of transgene-positive (Tg+) mice on days 1 and 3 after infection. Inflammatory mediators were also detected in these tissues, coinciding with high levels of virus replication. Lower virus titers were also detected in other tissues, including blood. In contrast, infected transgene-negative (Tg−) mice survived without showing any clinical illness. Pathologic examination suggests that the extensive involvement of the central nervous system likely contributed to the death of Tg+ mice, even though viral pneumonia was present. Preliminary studies with mice of a second lineage, AC63, in which the transgene expression was considerably less abundant than that in the AC70 line, revealed that virus replication was largely restricted to the lungs but not the brain. Importantly, despite significant weight loss, infected Tg+ AC63 mice eventually recovered from the illness without any mortality. The severity of the disease that developed in these transgenic mice—AC70 in particular—makes these mouse models valuable not only for evaluating the efficacy of antivirals and vaccines, but also for studying SARS coronavirus pathogenesis.


Author(s):  
Bogdan- Alexandru Hagiu

The role of the angiotensin-converting enzyme 2 (ACE2) receptor in SARS-CoV-2 virus infection and disease progression is complex, and the interaction with exercise is being investigated. However, the virus binds to ACE2. The paper hypothesizes that exceeding the lactic threshold during exercise would cause, through hypoxia, over expression of ACE2. Vasodilators would prevent hypoxia and implicitly this fact. To the complexity of the phenomenon is added the possibility of preventing severe forms of COVID-19 through mitochondrial biogenesis induced by exercise. As a result, the paper examines the ability of antihypertensives used in combination with exercise to treat cardiovascular disease to prevent ACE2 over expression and to stimulate mitochondrial biogenesis. Future research is needed, but it is worth mentioning that some such hypertensives have been proposed for the treatment of COVID-19.


Author(s):  
Amitha Ramesh ◽  
Raksha Potdar ◽  
Rahul Bhandary

AbstractGlobal outbreak of coronavirus disease 2019 (COVID-19) in December 2019 has affected millions of people around the world. This virus binds to angiotensin-converting enzyme-2 receptors present in the pharynx, nose, oral cavity, salivary glands, tongue, etc. Saliva has been shown to have viral loads of COVID-19 as it reported to be 2019-novel-coronavirus nucleic acid positive. This article is based on the association of oral fluids and their role in diagnosis of coronavirus infection.


Sign in / Sign up

Export Citation Format

Share Document