In vitro studies of antioxidant and estrogenic activities of Trifolium pratense L. extracts on human adenocarcinoma and non-tumorigenic breast cell lines

2021 ◽  
Author(s):  
Lucian Albulescu ◽  
Vasile Bercu ◽  
Emilia Manole ◽  
Alexandru Suciu ◽  
Cristina Luntraru ◽  
...  
2020 ◽  
Vol 10 (6) ◽  
pp. 315-324
Author(s):  
Fahmi Radityamurti ◽  
Fauzan Herdian ◽  
Tiara Bunga Mayang Permata ◽  
Handoko Handoko ◽  
Henry Kodrat ◽  
...  

Introduction: Vitamin D has been shown to have anti-cancer properties such as antioxidants, anti-proliferative, and cell differentiation. The property of vitamin D as an anticancer agent triggers researchers to find out whether vitamin D is useful as a radiosensitizer. Multiple studies have been carried out on cell lines in various types of cancer, but the benefits of vitamin D as a radiosensitizer still controversial. This paperwork aims to investigate the utilization of Vitamin D3 (Calcitriol) as radiosensitizer in various cell line through literature review.Methods: A systematic search of available medical literature databases was performed on in-vitro studies with Vitamin D as a radiosensitizer in all types of cell lines. A total of 11 in-vitro studies were evaluated.Results: Nine studies in this review showed a significant effect of Vitamin D as a radiosensitizer agent by promoting cytotoxic autophagy, increasing apoptosis, inhibiting of cell survival and proliferation, promoting gene in ReIB inhibition, inducing senescene and necrosis. The two remaining studies showed no significant effect in the radiosensitizing mechanism of Vitamin D due to lack of evidence in-vitro settings.Conclusion: Vitamin D have anticancer property and can be used as a radiosensitizer by imploring various mechanism pathways in various cell lines. Further research especially in-vivo settings need to be evaluated.


Lung Cancer ◽  
1997 ◽  
Vol 18 ◽  
pp. 132
Author(s):  
D. Brattström ◽  
M. Bergqvist ◽  
G. Wagenius ◽  
O. Brodin

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Michael T. C. Poon ◽  
Morgan Bruce ◽  
Joanne E. Simpson ◽  
Cathal J. Hannan ◽  
Paul M. Brennan

Abstract Background Malignant glioma cell line models are integral to pre-clinical testing of novel potential therapies. Accurate prediction of likely efficacy in the clinic requires that these models are reliable and consistent. We assessed this by examining the reporting of experimental conditions and sensitivity to temozolomide in glioma cells lines. Methods We searched Medline and Embase (Jan 1994-Jan 2021) for studies evaluating the effect of temozolomide monotherapy on cell viability of at least one malignant glioma cell line. Key data items included type of cell lines, temozolomide exposure duration in hours (hr), and cell viability measure (IC50). Results We included 212 studies from 2789 non-duplicate records that reported 248 distinct cell lines. The commonest cell line was U87 (60.4%). Only 10.4% studies used a patient-derived cell line. The proportion of studies not reporting each experimental condition ranged from 8.0–27.4%, including base medium (8.0%), serum supplementation (9.9%) and number of replicates (27.4%). In studies reporting IC50, the median value for U87 at 24 h, 48 h and 72 h was 123.9 μM (IQR 75.3–277.7 μM), 223.1 μM (IQR 92.0–590.1 μM) and 230.0 μM (IQR 34.1–650.0 μM), respectively. The median IC50 at 72 h for patient-derived cell lines was 220 μM (IQR 81.1–800.0 μM). Conclusion Temozolomide sensitivity reported in comparable studies was not consistent between or within malignant glioma cell lines. Drug discovery science performed on these models cannot reliably inform clinical translation. A consensus model of reporting can maximise reproducibility and consistency among in vitro studies.


Biomedicines ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 382
Author(s):  
Mario Dioguardi ◽  
Giorgia Apollonia Caloro ◽  
Luigi Laino ◽  
Mario Alovisi ◽  
Diego Sovereto ◽  
...  

The Rhopalurus junceus is a scorpion belonging to the Buthidae family that finds its habitat in Cuba. This scorpion is known by the common name of “Blue Scorpion”. The venom is used on the island of Cuba as an alternative cure for cancer and, more recently, in the research of active components for biomedicine. Recently, the venom has been tested in several studies to investigate its effects on cancer cell lines, and the initial results of in vitro studies demonstrated how this poison can be effective on certain carcinoma cell lines (Hela, SiHa, Hep-2, NCI-H292, A549, MDA-MB-231, MDA-MB-468, and HT-29). The aim of this review is, therefore, to describe the effects of the venom on carcinoma lines and to investigate all anti-cancer properties studied in the literature. The research was conducted using four databases, Pub Med, Scopus, EBSCO, and Web of Science, through the use of keywords, by two independent reviewers following the PRISMA protocol, identifying 57 records. The results led to a total of 13 articles that met the eligibility criteria. The data extracted for the purpose of meta-analysis included the IC50 of the venom on carcinoma cell lines. The results of the meta-analysis provided a pooled mean of the IC50 of 0.645 mg/mL (95% CI: 0.557, 0.733), with a standard error (SE) = 0.045, p < 0.001. The analysis of the subgroups, differentiated by the type of cell line used, provided insight regarding how the scorpion venom was effective on the cell lines of lung origin (NCI-H292, A549, and MRC-5) with a pooled mean of IC50 0.460 mg/mL (95% CI: 0.290, 0.631) SE (0.087) p < 0.001. The results described in the literature for in vitro studies are encouraging, and further investigations should be carried out and deepened.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5172-5172
Author(s):  
Ahmet H Elmaagacli ◽  
Michael Koldehoff ◽  
Nina K Steckel ◽  
Dietrich Beelen

Abstract Background. The protein kinase C (PKC) inhibitor PKC412 (N-benzylstaurosporine) is a derivate of the naturally occurring alkaloid staurosproine and has been shown to inhibit the conventional isoforms of PKC (alfa, beta1, beta2 and gamma). PKC412 has been shown to have an antitumor effect on non-small cell lung cancer and acute leukemia with FLT3 mutations, but little is known about its effect on multiple myeloma up to date. Methods. Since PKC is also an inhibitor of a tyrosin kinase which is associated with VEGF, and inhibits the release of Interleukin-6, TNF alfa, and that of growth factor dependent C-FOS, we postulated that PKC412 might have also strong anti-myeloma features. Here we evaluated the anti-myeloma effect of PKC412 in the multiple myeloma cell lines INA-6, OPM-2 and RPMI 8226 by measuring its effect on their proliferation rate, the apoptosis rate and the Interleukin-6 mRNA expression. Results. PKC412 showed strong anti-myeloma effects in all three celllines. 50nM of PKC412 was enough to drop the proliferation rate in all three cell lines under 10% compared to untreated cells(p&lt;0.01). The apoptosis rate increased in INA cell line up to 2,5 times and in RPMI cell line up to 3 times (p&lt;0.05), whereas only a moderate increase was observed in the OPM2 cell line with 500nM of PKC412. As expected, the IL-6 mRNA expression decreased after PKC412 treatment in all three cell lines more than 50%. The addition of Bevacizumab to PKC412 in RPMI and OPM-2 cell lines did not increased the apoptosis rate significantly, whereas the addition of short-interference RNA (RNAi) against VEGF increased the apoptosis rate in RPMI 8226 cells about 20% (p&lt;0.05) and in OPM-2 cells up to 30% (p&lt;0.01) compared to PKC412 alone, which was also associated concordantly with a further reduction of the proliferation rate in RPMI and OPM-2 cells up to 30%. Conclusions. PKC412 shows strong anti-myeloma effects and might be effective also in the treatment of patients with multiple myeloma. These in-vitro studies might encourage to initiate clinical trials with PKC412 in patients with multiple myeloma.


Sign in / Sign up

Export Citation Format

Share Document