Resilient Modulus and Permanent Deformation Responses of Geogrid-Reinforced Construction and Demolition Materials

2014 ◽  
Vol 26 (3) ◽  
pp. 512-519 ◽  
Author(s):  
M. A. Rahman ◽  
A. Arulrajah ◽  
J. Piratheepan ◽  
M. W. Bo ◽  
M. A. Imteaz
2021 ◽  
Vol 13 (6) ◽  
pp. 3315
Author(s):  
Mansour Fakhri ◽  
Danial Arzjani ◽  
Pooyan Ayar ◽  
Maede Mottaghi ◽  
Nima Arzjani

The use of waste materials has been increasingly conceived as a sustainable alternative to conventional materials in the road construction industry, as concerns have arisen from the uncontrolled exploitation of natural resources in recent years. Re-refined acidic sludge (RAS) obtained from a waste material—acidic sludge—is an alternative source for bitumen. This study’s primary purpose is to evaluate the resistance of warm mix asphalt (WMA) mixtures containing RAS and a polymeric additive against moisture damage and rutting. The modified bitumen studied in this research is a mixture of virgin bitumen 60/70, RAS (10, 20, and 30%), and amorphous poly alpha olefin (APAO) polymer. To this end, Marshall test, moisture susceptibility tests (i.e., tensile strength ratio (TSR), residual Marshall, and Texas boiling water), resilient modulus, and rutting assessment tests (i.e., dynamic creep, Marshall quotient, and Kim) were carried out. The results showed superior values for modified mixtures compared to the control mix considering the Marshall test. Moreover, the probability of a reduction in mixes’ moisture damage was proved by moisture sensitivity tests. The results showed that modified mixtures could improve asphalt mixtures’ permanent deformation resistance and its resilience modulus. Asphalt mixtures containing 20% RAS (substitute for bitumen) showed a better performance in all the experiments among the samples tested.


2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Norfazira Mohd Azahar ◽  
Norhidayah Abdul Hassan ◽  
Ramadhansyah Putra Jaya ◽  
Hasanan Md. Nor ◽  
Mohd Khairul Idham Mohd Satar ◽  
...  

The use of cup lump rubber as an additive in asphalt binder has recently become the main interest of the paving industry. The innovation helps to increase the natural rubber consumption and stabilize the rubber price. This study evaluates the mechanical performance of cup lump rubber modified asphalt (CMA) mixture in terms of resilient modulus, dynamic creep and indirect tensile strength under aging conditions. The CMA mixture was prepared using dense-graded Marshall-designed mix and the observed behavior was compared with that of conventional mixture. From the results, both mixtures passed the volumetric properties as accordance to Malaysian Public Work Department (PWD) specification. The addition of cup lump rubber provides better resistance against permanent deformation through the enhanced properties of resilient modulus and dynamic creep. Furthermore, the resilient modulus of CMA mixture performed better under aging conditions.  


Author(s):  
Matthew W. Frost ◽  
J. Paul Edwards ◽  
Paul R. Fleming ◽  
Stuart J. Arnold

With the increasing agenda for sustainability, the United Kingdom is attempting to move away from the empirical design of pavement foundations to develop a performance specification approach that facilitates analytical design. The measurement of the subgrade performance parameters of resilient modulus and resistance to permanent deformation is required for analytical design. These parameters ideally should be assessed concurrently under loading and environmental conditions similar to those the materials will experience in the field. To date, measurement of these parameters is largely confined to research laboratories using cyclic triaxial testing with advanced on-sample strain measurement. This apparatus is considered too complicated for routine commercial use; hence, the implementation of laboratory performance evaluation for routine pavement foundation design is potentially limited. A previous program of cyclic triaxial testing on clay subgrades indicated a series of useful correlations between strength and permanent deformation behavior (via a threshold stress) and material resilient modulus at this threshold. The previous work is reviewed; with these correlations, data from tests performed on three different clay materials to develop simplified equipment and procedures for the routine measurement of the required design parameters are presented. Simple pseudostatic tests can measure a subgrade modulus for a simplified performance-based design. The previous data (in the light of the recent work) were reevaluated to show a boundary correlation that may allow a shear strength–based parameter to control (in design) the onset of permanent deformation, and the ways long-term subgrade water content changes can be accommodated are detailed.


1979 ◽  
Vol 16 (4) ◽  
pp. 798-802 ◽  
Author(s):  
P. N. Gaskin ◽  
G. P. Raymond ◽  
F. Y. Addo-Abedi ◽  
J. S. Lau

Twelve repeated load drained triaxial tests to at least 105 cycles on a sand are reported. A threshold stress of about 50% of the static failure strength was found. Below the threshold stress, the permanent deformation and resilient modulus reached constant values. Above the threshold stress, the permanent deformation began to increase rapidly and the resilient modulus to decrease as the number of stress cycles increased. The importance of keeping the traffic stress in the pavement below the threshold stress is outlined.


1997 ◽  
Vol 1590 (1) ◽  
pp. 108-117 ◽  
Author(s):  
Richard P. Izzo ◽  
Joe W. Button ◽  
Maghsoud Tahmoressi

Coarse matrix high binder (CMHB) is a gap-graded hot mix consisting of a large proportion of coarse aggregate with an asphalt binder-filler mastic. CMHB and dense-graded mixtures were compared in terms of their resistance to rutting (permanent deformation), moisture damage, aging, and water permeability. A static creep test was performed to evaluate relative rutting susceptibility. Moisture damage was assessed with the tensile strength ratio (TSR) and a boiling-water test. The effects of aging were evaluated with indirect tensile strength and resilient modulus testing. Penetration and complex shear modulus ( G*) of the recovered, aged asphalt were measured. Permeability was determined with Darcy's Law for flow through saturated, porous media. The static creep test did not indicate that CMHB mixtures were consistently more resistant to rutting in comparison with dense-graded mixtures. CMHB mixtures were found to be more resistant to moisture damage, which was indicated by higher TSR values and less visible stripping than corresponding dense-graded mixtures. The dense-graded mixtures exhibited higher resilient moduli and indirect tensile strengths after short-term and long-term aging. Penetration of binder extracted from aged CMHB mixtures was greater than that from dense-graded mixtures. Binder extracted from aged dense-graded mixtures exhibited higher G* values. The permeability of CMHB mixtures was greater than that of the dense-graded mixtures with comparable air voids.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 632
Author(s):  
Saieth Baudilio Chaves-Pabón ◽  
Hugo Alexander Rondón-Quintana ◽  
Carlos Alfonso Zafra-Mejía

When a hot-mix asphalt (HMA) ages, its mechanical properties, resistance, and durability change. Several studies have been conducted throughout the world to evaluate the effects of aging in HMAs. However, few studies have analyzed the influence of gradation. The main objective of this study was to evaluate the influence of gradation on the mechanical properties of aged HMA mixes. For such purposes, three HMA mixes with different gradations were manufactured (named HMA-10, HMA-19, and HMA-25), which were conditioned in STOA (short-term oven aging) and LTOA (long-term oven aging) by following the guidelines established by the AASHTO R30 specification. Marshall, Indirect Tensile Strength (ITS), resilient modulus, permanent deformation, fatigue (under controlled-stress condition), and Cantabro tests were performed. These tests were carried out to evaluate resistance under monotonic and cyclic load as well as the resistance to moisture damage and abrasion. The best performing mix in the test was HMA-19. There is no clear trend about the influence of gradation over the susceptibility of mixes for aging. This susceptibility changes depending on the test performed and the property measured. Furthermore, in resilient modulus tests, it is observed that the influence of gradation on aging susceptibility changes depending on the test temperature.


2019 ◽  
Vol 28 (1) ◽  
pp. 20-31
Author(s):  
Arshad Hussain ◽  
Fazal Haq ◽  
Nauman Javaid ◽  
Muhammad Bilal Khurshid

Author(s):  
Carlos Hidalgo Sgnes

Over the last years rubber from scrap tyres has been reused in different civil works such as road embankments and railway platforms due to its resilient properties, low degradation and vibration attenuation. Unfortunately, this issue is still scarce. For instance, in Spain about 175.000 tonnes of scrap tyres were collected in 2014, of which only 0.6% were reused in civil works. Aiming to contribute to the reutilisation of large quantities of this waste material, this paper focuses on the analysis of unbound mixtures of granular materials with different percentages of rubber particles to be used as subballast layers. Mixtures are tested under cyclic triaxial tests so as to obtain their resilient modulus and evaluate their permanent deformations. It is found that as the rubber content increases, the resilient modulus decreases and the permanent deformation increases. Taking into account the usual loads transmitted to the subballast layer, the optimum rubber content that does not compromise the behaviour of the mixture is set in a range between 2.5% and 5% in terms of weight.DOI: http://dx.doi.org/10.4995/CIT2016.2016.4231


Sign in / Sign up

Export Citation Format

Share Document