Engineering and Leachate Characteristics of Granulated Blast-Furnace Slag as a Construction Material

2020 ◽  
Vol 32 (7) ◽  
pp. 04020153 ◽  
Author(s):  
Farshid Maghool ◽  
Arul Arulrajah ◽  
Suksun Horpibulsuk ◽  
Abbas Mohajerani
Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 343
Author(s):  
Taha Ashour ◽  
Mohamad Morsy ◽  
Azra Korjenic ◽  
Henriette Fischer ◽  
Mervat Khalil ◽  
...  

The construction industry is responsible for a large amount of both embodied carbon and emissions. Especially with concrete, there is still a lot of potential for designing recipes in a more ecological way. Approaches to reduce the environmental impact of concrete include the use of industrial and agricultural by-products. This study combines the approaches of replacing cement with granulated blast furnace slag and the use of NaOH-treated rice straw fibers. The research objective comprises the design of an ecologically optimized concrete as well as the question of whether a pretreatment of rice straw fibers with NaOH improves the performance of the designed concrete. The method includes mechanical and physical testing of the of the designed concrete as well as an optical analysis with a scanning electron microscope. The results indicated that treating rice straw with 1% NaOH indicates a better bond between fibers and the surrounding matrix. The tests in which the rice straw was treated with NaOH achieved a higher density, splitting strength, tensile strength and compressive strength. The study contributes an ecologically optimized concrete with granulated blast furnace slag and NaOH-treated rice straw concrete, which shows a great potential as an environmentally friendly, low-cost construction material.


2020 ◽  
Vol 897 ◽  
pp. 98-105
Author(s):  
Thanh Sang Nguyen ◽  
Thanh Sang Nguyen

Fly ash and ground granulated blast furnace slag (GGBFS) is a green construction material used to produce durable concrete. Experimental research on eco-concrete uses incorporating cement, fly ash and GGBFS. Fly ash and GGBFS replace different cement content by weighing, evaluating the workability, mechanical properties and durability of eco-concrete. The results also show that combining fly ash and GGBFS in concrete can create compressive strength concrete of 55MPa while the amount of cement used for 1m3 of co-concrete does not exceed 300 kilograms, the research also judges the water absorption, the chloride penetration resistance at 28 days with 30% replacement of GGBFS.


2017 ◽  
Vol 68 (6) ◽  
pp. 1182-1187
Author(s):  
Ilenuta Severin ◽  
Maria Vlad

This article presents the influence of the properties of the materials in the geopolymeric mixture, ground granulated blast furnace slag (GGBFS) + wheat straw ash (WSA) + uncalcined red mud (RMu), and ground granulated blast furnace slag + wheat straw ash + calcined red mud (RMc), over the microstructure and mechanical properties of the synthesised geopolymers. The activation solutions used were a NaOH solution with 8M concentration, and a solution realised from 50%wt NaOH and 50%wt Na2SiO3. The samples were analysed: from the microstructural point of view through SEM microscopy; the chemical composition was determined through EDX analysis; and the compressive strength tests was done for samples tested at 7 and 28 days, respectively. The SEM micrographies of the geopolymers have highlighted a complex structure and an variable compressive strength. Compressive strength varied from 24 MPa in the case of the same recipe obtained from 70% of GGBFS + 25% WSA +5% RMu, alkaline activated with NaOH 8M (7 days testing) to 85 MPa in the case of the recipe but replacing RMu with RMc with calcined red mud, alkaline activated with the 50%wt NaOH and 50%wt Na2SiO3 solution (28 days testing). This variation in the sense of the rise in compressive strength can be attributed to the difference in reactivity of the materials used in the recipes, the curing period, the geopolymers structure, and the presence of a lower or higher rate of pores, as well as the alkalinity and the nature of the activation solutions used.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 382 ◽  
Author(s):  
Danying Gao ◽  
Zhenqing Zhang ◽  
Yang Meng ◽  
Jiyu Tang ◽  
Lin Yang

This work aims to investigate the effect of additional flue gas desulfurization gypsum (FGDG) on the properties of calcium sulfoaluminate cement (CSAC) blended with ground granulated blast furnace slag (GGBFS). The hydration rate, setting time, mechanical strength, pore structure and hydration products of the CSAC-GGBFS mixture containing FGDG were investigated systematically. The results show that the addition of FGDG promotes the hydration of the CSAC-GGBFS mixture and improves its mechanical strength; however, the FGDG content should not exceed 6%.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 596
Author(s):  
Yasuhiro Dosho

To improve the application of low-quality aggregates in structural concrete, this study investigated the effect of multi-purpose mineral admixtures, such as fly ash and ground granulated blast-furnace slag, on the performance of concrete. Accordingly, the primary performance of low-quality recycled aggregate concrete could be improved by varying the replacement ratio of the recycled aggregate and using appropriate mineral admixtures such as fly ash and ground granulated blast-furnace slag. The results show the potential for the use of low-quality aggregate in structural concrete.


Author(s):  
Jean Noël Yankwa Djobo ◽  
Dietmar Stephan

AbstractThis work aimed to evaluate the role of the addition of blast furnace slag for the formation of reaction products and the strength development of volcanic ash-based phosphate geopolymer. Volcanic ash was replaced by 4 and 6 wt% of ground granulated blast furnace slag to accelerate the reaction kinetics. Then, the influence of boric acid for controlling the setting and kinetics reactions was also evaluated. The results demonstrated that the competition between the dissolution of boric acid and volcanic ash-slag particles is the main process controlling the setting and kinetics reaction. The addition of slag has significantly accelerated the initial and final setting times, whereas the addition of boric acid was beneficial for delaying the setting times. Consequently, it also enhanced the flowability of the paste. The compressive strength increased significantly with the addition of slag, and the optimum replaced rate was 4 wt% which resulted in 28 d strength of 27 MPa. Beyond that percentage, the strength was reduced because of the flash setting of the binder which does not allow a subsequent dissolution of the particles and their precipitation. The binders formed with the addition of slag and/or boric acid are beneficial for the improvement of the water stability of the volcanic ash-based phosphate geopolymer.


2021 ◽  
Vol 276 ◽  
pp. 122218
Author(s):  
Sangram K. Sahoo ◽  
Benu G. Mohapatra ◽  
Sanjaya K. Patro ◽  
Prasanna K. Acharya

Sign in / Sign up

Export Citation Format

Share Document