Numerical Simulation on Soil Temperature Field around Underground Hot Oil Pipelines and Medium Temperature-Drop in the Process of Staring

ICPTT 2009 ◽  
2009 ◽  
Author(s):  
Guiyang Ma ◽  
Fuxin Gu ◽  
Jintong Gu ◽  
Xiaoling Li
2013 ◽  
Vol 805-806 ◽  
pp. 552-556
Author(s):  
Ying Xu ◽  
Xiao Yan Liu

In chilliness area, the temperature drop of oil in buried pipeline is affected by soil temperature field, and the thermal diffusivity is one of the main of physical property the soil, which affects the temperature drop of oil directly. This paper introduced the test principle of the thermal diffusivity of soil, and researched the influence of thermal diffusivity of soil on the soil physical property, such as soil natural temperature field, soil frozen days, depth of freezing and temperature delay, which can offer theory support for the calculation of hot oil temperature drop in buried pipeline.


2011 ◽  
Vol 268-270 ◽  
pp. 154-159 ◽  
Author(s):  
Bo Xu ◽  
Xiang Dong Xue ◽  
Zhi Qiang Yao ◽  
Long Wang ◽  
De Ji Wang ◽  
...  

Temperature plot is crucially important for numerical simulation of high waxy crude pipeline because of its non-Newtonian behavior at low temperature. As the fluid temperature drops below than the wax appearance temperature, the viscosity of the crude increases dramatically. Thus the needed pressure has a possibility to reach the maximum allowable pressure and cause a potential risk for the pipeline itself. To avoid this, numerical simulation of the temperature plot along the pipeline is necessary in order to obtain accurate information. However, as the temperature governing equation is a non-linear equation and the soil temperature field is also being involved. It is required to solve the surrounded soil temperature field. In the paper, the governing equation for one dimensional crude pipeline and the new moisture-heat equation for the soil (porous medium) are presented and the iteration algorithm to solve this coupled equation is given. With the algorithm and the coupled heat-moisture equations, the numerical results are obtained and have a very precise coincidence with the experimental results. Then a reliability based method is used to evaluate the flow safety of one pipeline in China. With the presented model and obtained results, the flow safety evaluation results show that the safety of the crude pipeline is assured in the test cases.


2013 ◽  
Vol 807-809 ◽  
pp. 1505-1513 ◽  
Author(s):  
Amir A.B. Musa ◽  
Xiong Wei Zeng ◽  
Qing Yan Fang ◽  
Huai Chun Zhou

The optimum temperature within the reagent injection zone is between 900 and 1150°C for the NOX reduction by SNCR (selective non-catalytic reduction) in coal-fired utility boiler furnaces. As the load and the fuel property changes, the temperature within the reagent injection zone will bias from the optimum range, which will reduces significantly the de-NOX efficiency, and consequently the applicability of SNCR technology. An idea to improve the NOX reduction efficiency of SNCR by regulating the 3-D temperature field in a furnace is proposed in this paper. In order to study the new method, Computational fluid dynamics (CFD) model of a 200 MW multi-fuel tangentially fired boiler have been developed using Fluent 6.3.26 to investigate the three-fuel combustion system of coal, blast furnace gas (BFG), and coke oven gas (COG) with an eddy-dissipation model for simulating the gas-phase combustion, and to examine the NOX reduction by SNCR using urea-water solution. The current CFD models have been validated by the experimental data obtained from the boiler for case study. The results show that, with the improved coal and air feed method, average residence time of coal particles increases 0.3s, burnout degree of pulverized coal increases 2%, the average temperature at the furnace nose decreases 61K from 1496K to 1435K, the NO emission at the exit (without SNCR) decreases 58 ppm from 528 to 470 ppm, the SNCR NO removal efficiency increases 10% from 36.1 to 46.1%. The numerical simulation results show that this combustion adjustment method based on 3-D temperature field reconstruction measuring system in a 200 MW multi-fuel tangentially fired utility boiler co-firing pulverized coal with BFG and COG is timely and effective to maintain the temperature of reagent injection zone at optimum temperature range and high NOX removal efficiency of SNCR.


Author(s):  
Shaolin Chen ◽  
Hong Zhang ◽  
Liaoping Hu ◽  
Guangqing He ◽  
Fen Lei ◽  
...  

The fatigue life of turbine housing is an important index to measure the reliability of a radial turbocharger. The increase in turbine inlet temperatures in the last few years has resulted in a decrease in the fatigue life of turbine housing. A simulation method and experimental verification are required to predict the life of a turbine housing in the early design and development process precisely. The temperature field distribution of the turbine housing is calculated using the steady-state bidirectional coupled conjugate heat transfer method. Next, the temperature field results are considered as the boundary for calculating the turbine housing temperature and thermomechanical strain, and then, the thermomechanical strain of the turbine housing is determined. Infrared and digital image correlations are used to measure the turbine housing surface temperature and total thermomechanical strain. Compared to the numerical solution, the maximum temperature RMS (Root Mean Square) error of the monitoring point in the monitoring area is only 3.5%; the maximum strain RMS error reached 11%. Experimental results of temperature field test and strain measurement test show that the testing temperature and total strain results are approximately equal to the solution of the numerical simulation. Based on the comparison between the numerical calculation and experimental results, the numerical simulation and test results were found to be in good agreement. The experimental and simulation results of this method can be used as the temperature and strain (stress) boundaries for subsequent thermomechanical fatigue (TMF) simulation analysis of the turbine housing.


Author(s):  
Yang Zhang ◽  
Tomasz Duda ◽  
James A. Scobie ◽  
Carl M. Sangan ◽  
Colin D. Copeland ◽  
...  

This paper is part of a two-part publication that aims to design, simulate and test an internally air cooled radial turbine. To achieve this, the additive manufacturing process, Selective Laser Melting (SLM), was utilized to allow internal cooling passages within the blades and hub. This is, to the authors’ knowledge, the first publication in the open literature to demonstrate an SLM manufactured, cooled concept applied to a small radial turbine. In this paper, the internally cooled radial turbine was investigated using a Conjugate Heat Transfer (CHT) numerical simulation. Topology Optimisation was also implemented to understand the areas of the wheel that could be used safely for cooling. In addition, the aerodynamic loss and efficiency of the design was compared to a baseline non-cooled wheel. The experimental work is detailed in Part 2 of this two-part publication. Given that the aim was to test the rotor under representative operating conditions, the material properties were provided by the SLM technology collaborator. The boundary conditions for the numerical simulation were derived from the experimental testing where the inlet temperature was set to 1023 K. A polyhedral unstructured mesh made the meshing of internal coolant plenums including the detailed supporting structures possible. The simulation demonstrated that the highest temperature at the blade leading edge was 117 K lower than the uncooled turbine. The coolant mass flow required by turbine was 2.5% of the mainstream flow to achieve this temperature drop. The inertia of the turbine was also reduced by 20% due to the removal of mass required for the internal coolant plenums. The fluid fields in both the coolant channels and downstream of the cooled rotor were analyzed to determine the aerodynamic influence on the temperature distribution. Furthermore, the solid stress distribution inside the rotor was analyzed using Finite Element Analysis (FEA) coupled with the CFD results.


Sign in / Sign up

Export Citation Format

Share Document