Experimental Study on Unconfined Compressive Strength of Completely Weathered Granite Improved Soil

Author(s):  
Wen Yi ◽  
Zi-Xin Xie ◽  
Yong-He Wang
2018 ◽  
Vol 53 ◽  
pp. 04021
Author(s):  
SHAO Yong ◽  
LIU Xiao-li ◽  
ZHU Jin-jun

Industrial alkali slag is the discharge waste in the process of alkali production. About one million tons of alkali slag is discharged in China in one year. It is a burden on the environment, whether it is directly stacked or discharged into the sea. If we can realize the use of resources, it is a multi-pronged move, so alkali slag is used to improve solidified marine soft soil in this paper. The test results show that the alkali residue can effectively improve the engineering properties of marine soft soil. Among them, the unconfined compressive strength and compressive modulus are increased by about 10 times, and the void ratio and plasticity index can all reach the level of general clay. It shows that alkali slag has the potential to improve marine soft soil and can be popularized in engineering.


2020 ◽  
Vol 17 (2) ◽  
pp. 1059-1069
Author(s):  
Mohd Firdaus Md Dan ◽  
Edy Tonnizam Mohamad ◽  
Ibrahim Komoo ◽  
Aziman Madun ◽  
Siti Norsalkini Mohd Akip Tan

Engineering properties of tropical weathered granite mass have been widely investigated and classified for engineering purposes. However, the engineering properties of tropical boulder in weathered granite profile is poorly understood and not well classified. This study aims to examine and classify the physico-mechanical properties of granite boulder in completely weathered zone. A total of 34 in-situ boulders were examined from two granite quarries located in Southern Johor, Malaysia. Microstructure-mineralogical alterations were analyzed based on petrographic analysis and scanning electron microscopy (SEM). The mechanical properties were including dry density, porosity, point load strength, uniaxial compressive strength and permeability. Three properties were identified as significant indicators to differentiate between tropical boulder and completely weathered granite when it is evaluated from the soil investigation drilling work namely; texture characteristics, discolourations and degree of weathering. Analysis revealed that the alteration of microstructures and minerals such as feldspar, biotite, and plagioclase from corestone (Grade I/II) to saprolite (Grade IV/V) zone were significantly reduced the dry density, point load strength, uniaxial compressive strength and permeability with 32%, 99.5%, 98.6% and 84.8%, respectively. It has also significantly increased the porosity up to 11.6 times or 1065% from corestone to saprolite. The significant different of physico-mechanical properties of material surrounding boulder due to weathering can be classified and useful in evaluation of geotechnical design and geological engineering applications.


2020 ◽  
Vol 12 (1) ◽  
pp. 39-52
Author(s):  
Jair de Jesús Arrieta Baldovino ◽  
Ronaldo Luis dos Santos Izzo

The Guabirotuba Formation is located over the sedimentary basin of the city of Curitiba (Brazil). The gray layer of the Formation extends from 1 to 50 m deep. Although it is the most characteristic layer of the Formation, there are no studies of stabilization of these soils for urban paving purposes inthe city. Thus, this paper presents an experimental study of the stabilization of gray silt soil with Portland cement (PC) using cure times (t) of 7, 14, and 28 days. Cement contents (C) of 3, 5, 7, and 9% in relation to soil dry mass were used. After cure times, unconfined compressive strength (qu) and durability tests were performed using wet/dry cycles (W/D). The results show an increase of quwith increasing cement content, increasing molding density and increasing curing time. In addition, the durability of the mixtures increased when more cement was added. It was found that the values of quare dependent on the semi-empirical porosity/cement ratio (η/Civ). Finally, 5% is the minimum cement content for using the soil in paving purposes.


2014 ◽  
Vol 1004-1005 ◽  
pp. 1508-1511
Author(s):  
Yun Lian Song ◽  
Kai Liu ◽  
Min Lin ◽  
Peng Liu

5% cement was mixed into the cement stabilized macadam base material, then the cement was replaced by SES-I early strength admixture according to the amount of cement (mass ration) which was 0%, 8%, 10%, 12%, 14% and 16%. The unconfined compressive strength Rc of cement stabilized macadam material was tested during different curing periods 12h, 1d, 2d, 3d, 7d and 28d. Depending on the experimental date, the effect of early strength admixture on cement stabilized macadam material was investigated, and the logarithmic curve relationship can be fitted between the SES-I admixture and Rc. The experiment result shows that the 14% dosage of early strength agent is the best result for material early strength, and it also provides the foundation to increase early strength and shorten the construction period for meeting the project design demand.


2020 ◽  
pp. 10-17
Author(s):  
Qi Daozheng ◽  
Gu Cong ◽  
Fu Jiajia ◽  
Wang Yao

The effects of polypropylene fiber reinforcement on shear strength and unconfined compressive strength of silty soft soil in tidal flats were studied. Through shear test and unconfined compression test, Experimental study was conducted on silty soft soil of allene fiber reinforced beach with 0~0.6% different mass content and 3 ~18m different length. The failure process and mechanism of fiber reinforced soil samples were also discussed. The test results show that: Shear strength (cohesion and internal friction Angle) and unconfined compressive strength increased rapidly in the early stage with the increase of fiber content, and gradually decreased after reaching the peak at a certain content. In this test, the optimal fiber length corresponding to shear strength is 9mm. When the content is less than 0.6%, the optimal content of cohesion is about 0.2%, and the optimal content corresponding to the Angle of internal friction is between 0.2% and 0.3%. Within the range of 18mm fiber length in the experimental study, unconfined compressive strength increased with the increase of fiber length, and the optimal fiber content corresponding to unconfined compressive strength was 0.2%. The main effects of polypropylene fiber reinforcement on soil cohesion and unconfined compressive strength are not obvious.


Author(s):  
G.O Adunoye ◽  
O.C Onah ◽  
F.O Ajibade

This study undertook an experimental study of the comparative effects of Atterberg limits, particles size and compaction parameters on the unconfined compressive strength of selected soils. This was with a view to ascertaining which of the combinations of the soil properties will produce a good prediction of the unconfined compressive strength. To achieve this aim, soil samples were obtained from selected locations within Ife Central Local Government Area, Osun State, Nigeria. The following tests were conducted on the soil samples, following standard procedures: natural moisture content determination, specific gravity, Atterberg limits, compaction and unconfined compressive strength. Using Regression tool, the results obtained from the laboratory tests were used to develop the relationships between each of the index properties and unconfined compressive strength. Results showed that the natural moisture content of soil samples ranges between 18.48 % and 25.03 %; specific gravity ranges between 2.35 and 2.69; liquid limit ranges between 39.95 % and 83.98 %; plastic limit ranges between 29.32 % and 51.18 %; and plasticity index is between 8.74 % and 33.56 %. The maximum dry density ranges between 15.30kN/m3 and 19.30kN/m3 with their optimum moisture contents ranging between 13.80 % and 35.50 % while unconfined compressive strength is between 36.00 kN/m2 and 97.14 kN/m2. The results of regression analysis showed that effective size and coefficient of uniformity have the greatest effect (R2 = 0.82) on unconfined compressive strength of the tested soil samples. Therefore, the study concluded that effective size and coefficient of uniformity could be used to estimate the unconfined compressive strength of the soils.


Sign in / Sign up

Export Citation Format

Share Document