The Impact of Connected Vehicles on Freeway Travel Time

Author(s):  
Alireza Shams ◽  
Ali Soltani ◽  
Niloofar Asadi ◽  
Afshin Famili
Author(s):  
Meng Xie ◽  
Michael Winsor ◽  
Tao Ma ◽  
Andreas Rau ◽  
Fritz Busch ◽  
...  

This paper aims to evaluate the sensitivity of the proposed cooperative dynamic bus lane system with microscopic traffic simulation models. The system creates a flexible bus priority lane that is only activated on demand at an appropriate time with advanced information and communication technologies, which can maximize the use of road space. A decentralized multi-lane cooperative algorithm is developed and implemented in a microscopic simulation environment to coordinate lane changing, gap acceptance, and car-following driving behavior for the connected vehicles (CVs) on the bus lane and the adjacent lanes. The key parameters for the sensitivity study include the penetration rate and communication range of CVs, considering the transition period and gradual uptake of CVs. Multiple scenarios are developed and compared to analyze the impact of key parameters on the system’s performance, such as total saved travel time of all passengers and travel time variation among buses and private vehicles. The microscopic simulation models showed that the cooperative dynamic bus lane system is significantly sensitive to the variations of the penetration rate and the communication range in a congested traffic state. With a CV system and a communication range of 150 m, buses obtain maximum benefits with minimal impacts on private vehicles in the study simulation. The safety concerns induced by cooperative driving behavior are also discussed in this paper.


Author(s):  
Bin Yu ◽  
Miyi Wu ◽  
Shuyi Wang ◽  
Wen Zhou

Connected vehicles (CVs) exchange a variety of information instantly with surrounding vehicles and traffic facilities, which could smooth traffic flow significantly. The objective of this paper is to analyze the effect of CVs on running speed. This study compared the delay time, travel time, and running speed in the normal and the connected states, respectively, through VISSIM (a traffic simulation software developed by PTV company in German). The optimization speed model was established to simulate the decision-makings of CVs in MATLAB, considering the parameters of vehicle distance, average speed, and acceleration, etc. After the simulation, the vehicle information including speed, travel time, and delay time under the normal and the connected states were compared and evaluated, and the influence of different CV rates on the results was analyzed. In a two-lane arterial road, running speed in the connected state increase by 4 km/h, and the total travel time and delay time decrease by 5.34% and 16.76%, respectively, compared to those in the normal state. The optimal CV market penetration rate related to running speed and delay time is 60%. This simulation-based study applies user-defined lane change and lateral behavior rules, and takes different CV rates into consideration, which is more reliable and practical to estimate the impact of CV on road traffic characteristics.


2021 ◽  
Vol 13 (12) ◽  
pp. 6777
Author(s):  
Masanobu Kii ◽  
Yuki Goda ◽  
Varameth Vichiensan ◽  
Hiroyuki Miyazaki ◽  
Rolf Moeckel

Reducing congestion has been one of the critical targets of transportation policies, particularly in cities in developing countries suffering severe and chronic traffic congestions. Several traditional measures have been in place but seem not very successful. This paper applies the agent-based transportation model MATSim for a transportation analysis in Bangkok to assess the impact of spatiotemporal transportation demand management measures. We collect required data for the simulation from various data sources and apply maximum likelihood estimation with the limited data available. We investigate two demand management scenarios, peak time shift, and decentralization. As a result, we found that these spatiotemporal peak shift measures are effective for road transport to alleviate congestion and reduce travel time. However, the effect of those measures on public transport is not uniform but depends on the users’ circumstances. On average, the simulated results indicate that those measures increase the average travel time and distance. These results suggest that demand management policies require considerations of more detailed conditions to improve usability. The study also confirms that microsimulation can be a tool for transport demand management assessment in developing countries.


2021 ◽  
Vol 17 (1) ◽  
pp. 27-38
Author(s):  
Palak Thakur ◽  
Sharif Qamar

The paper intends to assess the impact of the odd–even scheme on the travel pattern of the daily commuters in Delhi. The objective of the paper is to assess the impact of the odd–even scheme on mode choice for daily work trips, shift in travel patterns – before, during, and post-implementation – of the odd–even scheme, and to understand people perception regarding the odd–even scheme. Based on the primary survey, the paper concludes that the odd–even scheme brought a significant impact in the travel pattern in terms of occupancy, travel cost, travel time, and modal shift, and statistically not so much on the air quality gain. It was observed that the scheme helped increase the occupancy rate in cars as well as ridership of buses and Delhi metro. The scheme had a huge impact on congestion, which was evident from both perception analysis and the change in travel time. The modal shift, with an improvement in public transport services and a reduction in car users, is one of the key successes of the scheme resulting in decrease in air pollution caused by private vehicles. To improve the outcome of the odd–even scheme on air pollution, two-wheelers should not be exempted going forward.


2021 ◽  
Author(s):  
Aliaksandr Malokin ◽  
Giovanni Circella ◽  
Patricia L. Mokhtarian

AbstractMillennials, the demographic cohort born in the last two decades of the twentieth century, are reported to adopt information and communication technologies (ICTs) in their everyday lives, including travel, to a greater extent than older generations. As ICT-driven travel-based multitasking influences travelers’ experience and satisfaction in various ways, millennials are expected to be affected at a greater scale. Still, to our knowledge, no previous studies have specifically focused on the impact of travel multitasking on travel behavior and the value of travel time (VOTT) of young adults. To address this gap, we use an original dataset collected among Northern California commuters (N = 2216) to analyze the magnitude and significance of individual and household-level factors affecting commute mode choice. We estimate a revealed-preference mode choice model and investigate the differences between millennials and older adults in the sample. Additionally, we conduct a sensitivity analysis to explore how incorporation of explanatory factors such as attitudes and propensity to multitask while traveling in mode choice models affects coefficient estimates, VOTT, and willingness to pay to use a laptop on the commute. Compared to non-millennials, the mode choice of millennials is found to be less affected by socio-economic characteristics and more strongly influenced by the activities performed while traveling. Young adults are found to have lower VOTT than older adults for both in-vehicle (15.0% less) and out-of-vehicle travel time (15.7% less), and higher willingness to pay (in time or money) to use a laptop, even after controlling for demographic traits, personal attitudes, and the propensity to multitask. This study contributes to better understanding the commuting behavior of millennials, and the factors affecting it, a topic of interest to transportation researchers, planners, and practitioners.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yajie Zou ◽  
Ting Zhu ◽  
Yifan Xie ◽  
Linbo Li ◽  
Ying Chen

Travel time reliability (TTR) is widely used to evaluate transportation system performance. Adverse weather condition is an important factor for affecting TTR, which can cause traffic congestions and crashes. Considering the traffic characteristics under different traffic conditions, it is necessary to explore the impact of adverse weather on TTR under different conditions. This study conducted an empirical travel time analysis using traffic data and weather data collected on Yanan corridor in Shanghai. The travel time distributions were analysed under different roadway types, weather, and time of day. Four typical scenarios (i.e., peak hours and off-peak hours on elevated expressway, peak hours and off-peak hours on arterial road) were considered in the TTR analysis. Four measures were calculated to evaluate the impact of adverse weather on TTR. The results indicated that the lognormal distribution is preferred for describing the travel time data. Compared with off-peak hours, the impact of adverse weather is more significant for peak hours. The travel time variability, buffer time index, misery index, and frequency of congestion increased by an average of 29%, 19%, 22%, and 63%, respectively, under the adverse weather condition. The findings in this study are useful for transportation management agencies to design traffic control strategies when adverse weather occurs.


Author(s):  
Parthkumar Patel ◽  
H.R. Varia

Safe, convenient and timely transportation of goods and passengers is necessary for development of nation. After independence road traffic is increased manifold in India. Modal share of freight transport is shifted from Railway to roadways in India. Road infrastructures continuously increased from past few decades but there is still need for new roads to be build and more than three forth of the roads having mixed traffic plying on it. The impact of freight vehicles on highway traffic is enormous as they are moving with slow speeds. Nature of traffic flow is dependent on various traffic parameters such as speed, density, volume and travel time etc. As per ideal situation these traffic parameters should remain intact, but it is greatly affected by presence of heavy vehicle in mixed traffic due to Svehicles plying on two lane roads. Heavy vehicles affect the traffic flow because of their length and size and acceleration/deceleration characteristics.  This study is aimed to analyse the impact of heavy vehicles on traffic parameters.


2020 ◽  
Vol 13 (1) ◽  
pp. 517-538 ◽  
Author(s):  
Pangwei Wang ◽  
Hui Deng ◽  
Juan Zhang ◽  
Mingfang Zhang

Advancement in the novel technology of connected vehicles has presented opportunities and challenges for smart urban transport and land use. To improve the capacity of urban transport and optimize land-use planning, a novel real-time regional route planning model based on vehicle to X communication (V2X) is presented in this paper. First, considering the traffic signal timing and phase information collected by V2X, road section resistance values are calculated dynamically based on real-time vehicular driving data. Second, according to the topology structure of the current regional road network, all predicted routes are listed based on the Dijkstra algorithm. Third, the predicted travel time of each alternative route is calculated, while the predicted route with the least travel time is selected as the optimal route. Finally, we design the test scenario with different traffic saturation levels and collect 150 sets of data to analyze the feasibility of the proposed method. The numerical results have shown that the average travel times calculated by the proposed optimal route are 8.97 seconds, 12.54 seconds, and 21.85 seconds, which are much shorter than the results of traditional navigation routes. This proposed model can be further applied to the whole urban traffic network and contribute to a greater transport and land-use efficiency in the future.


Author(s):  
Venkata R. Duddu ◽  
Srinivas S. Pulugurtha ◽  
Praveena Penmetsa

State agencies, regional agencies, cities, towns, and local municipalities design and maintain transportation systems for the benefit of users by improving mobility, reducing travel time, and enhancing safety. Cost–benefit analysis based on travel time savings and the value of reliability helps these agencies in prioritizing transportation projects or when evaluating transportation alternatives. This paper illustrates the use of monetary values of travel time savings and travel time reliability, computed for the state of North Carolina, to help assess the impact of transportation projects or alternatives. The results obtained indicate that, based on the illustration of the effect and impact of various transportation projects or alternatives, both improved travel time and reliability on roads yield significant monetary benefits. However, from cost–benefit analysis, it is observed that greater benefits can be achieved through improved reliability compared with benefits from a decrease in travel time for a given section of road.


Sign in / Sign up

Export Citation Format

Share Document