Experiment on Road Performance of Asphalt Mixture with Automatic Long-term Snowmelt Agent

Author(s):  
Fupu Li ◽  
Zhijun Wang
2020 ◽  
Vol 10 (7) ◽  
pp. 2523 ◽  
Author(s):  
Yingjun Jiang ◽  
Yu Zhang ◽  
Jinshun Xue ◽  
Changqing Deng ◽  
Tian Tian

In this study, stone mastic asphalt (SMA-13) mixtures were designed using three methods, namely the vertical-vibration testing method (VVTM), Marshall method, and superpave gyratory compactor method (SGC). The performances of SMA-13 designed by all three methods were measured and compared. Results show that the optimal asphalt content of the asphalt mixture was 5% lower in the VVTM-designed SMA-13 than in the Marshall-designed and SGC-designed asphalts mixture. In comparison with the Marshall- and SGC-designed asphalts mixture, the VVTM-designed SMA-13 exhibited higher density (2.4% and 2.2% increase, respectively), mechanical properties (32% and 13% increase, respectively), high-temperature rut resistance (30% and 8% increase, respectively), low-temperature crack resistance (20% and 17% increase, respectively), water stability (4% and 3% increase, respectively), and fatigue life (at least 33% and 9% increase, respectively). The VVTM-designed SMA-13 exhibited a deeper short-term aging degree than the other SMA-13 specimens, but a smaller long-term aging degree. In summary, the SMA-13 mixture designed by the VVTM method delivered a better road performance and durability than the traditional design method, enabling improved designs of SMA mixtures.


Author(s):  
Pengzhen Lu ◽  
Chenhao Zhou ◽  
Simin Huang ◽  
Yang Shen ◽  
Yilong Pan

Expansion joints are a weak and fragile part of bridge superstructure. The damage or failure of the expansion joint will lead to the decline of bridge durability and endanger the bridge structure and traffic safety. To improve the service life and performance of bridge expansion joints, the ideal method is to use seamless expansion joints. In this study, starting from the commonly used asphalt mixture gradation of seamless expansion joint, and taking into account the actual situation of bridge expansion joint structure and environment in China, the gradation and asphalt-aggregate ratio are preliminarily designed. Through a Marshall test, the corresponding asphalt mixture is evaluated and analyzed according to the stability, flow value, and void ratio, and the optimal gradation and asphalt-aggregate ratio are determined. Finally, the asphalt mixture is prepared with the mixture ratio design, and the test results of an immersion Marshall test, fatigue performance test, and full-scale test verify that the asphalt mixture meets the road performance requirements of seamless expansion joints. On the basis of the experimental data, the performance of large sample asphalt mixture is continuously tested, compared, and optimized. The results show that the asphalt mixture ratio designed is true and reliable, which can provide reference for the optimal design of seamless expansion joint filler.


Author(s):  
Behnam Jahangiri ◽  
Punyaslok Rath ◽  
Hamed Majidifard ◽  
William G. Buttlar

Various agencies have begun to research and introduce performance-related specifications (PRS) for the design of modern asphalt paving mixtures. The focus of most recent studies has been directed toward simplified cracking test development and evaluation. In some cases, development and validation of PRS has been performed, building on these new tests, often by comparison of test values to accelerated pavement test studies and/or to limited field data. This study describes the findings of a comprehensive research project conducted at Illinois Tollway, leading to a PRS for the design of mainline and shoulder asphalt mixtures. A novel approach was developed, involving the systematic establishment of specification requirements based on: 1) selection of baseline values based on minimally acceptable field performance thresholds; 2) elevation of thresholds to account for differences between short-term lab aging and expected long-term field aging; 3) further elevation of thresholds to account for variability in lab testing, plus variability in the testing of field cores; and 4) final adjustment and rounding of thresholds based on a consensus process. After a thorough evaluation of different candidate cracking tests in the course of the project, the Disk-shaped Compact Tension—DC(T)—test was chosen to be retained in the Illinois Tollway PRS and to be presented in this study for the design of crack-resistant mixtures. The DC(T) test was selected because of its high degree of correlation with field results and its excellent repeatability. Tailored Hamburg rut depth and stripping inflection point thresholds were also established for mainline and shoulder mixes.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1554 ◽  
Author(s):  
Pan Pan ◽  
Yi Kuang ◽  
Xiaodi Hu ◽  
Xiao Zhang

In this study, the aged asphalt binder and mixture were laboratory prepared through short-term ageing testing and long-term ageing testing. Firstly, the effect of rejuvenator on physical properties of aged asphalt binders was investigated. In addition, a series of laboratory tests were performed to evaluate the influence of ageing and rejuvenator content on the mechanical properties, durability and dynamic characteristics of asphalt mixtures. Physical test results of asphalt binder testified that rejuvenator used can efficiently recover the aged asphalt binder. However, the effect of ageing and rejuvenator content exhibits different trends depending on the physical property tests conducted. Moreover, artificially aged asphalt mixture with rejuvenator has better ability to resist moisture damage and ravelling. In addition, the ITSR value is more suitable to evaluate the moisture susceptibility for asphalt recycling. Although rejuvenator improves the thermal cracking resistance and fatigue property of aged asphalt mixture, rejuvenated mixture shows greater modulus and inferior ability to resist reflective cracking than the unaged mixture. Moreover, rejuvenated mixture shows less dependence on frequency at high temperature regions and stronger dependence at low temperature regions compared to unaged and long-term aged mixtures.


2021 ◽  
Vol 3 (3) ◽  
pp. 69-75
Author(s):  
Cindy Pasilaputri ◽  
Alpius ◽  
Louise Elizabeth Radjawane

Several factors that can affect road damage are excessive traffic load, temperature (weather), water, and pavement construction that does not meet the technical requirements. The durability of an asphalt mixture is the resistance of the mixture to the effects of water, water vapor, and temperature. A mixture with a high durability value provides a good mix quality and long-term use. The purpose of this study was to determine the durability of the AC-BC mixture using Mount Baba stone. The general specifications of Bina Marga in 2018 are the reference in this study. By using the standard Marshall test method, the results obtained through the Marshall AC-BC mixture immersion test with a duration of immersion time of 0.5 hours, 12 hours, 24 hours, 36 hours, 48 hours, 60 hours with a durability value of 95.49% - 86.99%. The increase in immersion time causes a decrease in the durability of the mixture.


2017 ◽  
Vol 67 (328) ◽  
pp. 138 ◽  
Author(s):  
A. P. Pérez-Fortes ◽  
M. J. Varas-Muriel ◽  
P. Castiñeiras

The asphalt surface layer is the most exposed to weather and traffic conditions on roads, especially those subjected to winter maintenance. Therefore, a deep knowledge of the mechanisms which can damage this layer is necessary to improve its design, construction and long-term use. With this purpose, two types of asphalt mixtures used on roads from NW Spain were subjected to durability tests (freezing-thaw and thermal-stress) with a saturated NaCl solution. After the durability tests, a wheel tracking test was performed on the samples, and the resultant material was analyzed by optical polarized light and fluorescence microscopy. This analysis showed that the binder-aggregate low adhesion was the main responsible of the asphalt mixture damage. This damage was concentrated in the aggregates because the binder acted as an impermeable wall. Consequently, the NaCl solution penetrated and degraded the aggregates quickly and strongly.


Sign in / Sign up

Export Citation Format

Share Document