Ion‐implantation‐damage gettering effect in silicon photodiode array camera target

1973 ◽  
Vol 22 (5) ◽  
pp. 238-240 ◽  
Author(s):  
C.M. Hsieh ◽  
J.R. Mathews ◽  
H.D. Seidel ◽  
K.A. Pickar ◽  
C.M. Drum
Author(s):  
J. B. Warren

Electron diffraction intensity profiles have been used extensively in studies of polycrystalline and amorphous thin films. In previous work, diffraction intensity profiles were quantitized either by mechanically scanning the photographic emulsion with a densitometer or by using deflection coils to scan the diffraction pattern over a stationary detector. Such methods tend to be slow, and the intensities must still be converted from analog to digital form for quantitative analysis. The Instrumentation Division at Brookhaven has designed and constructed a electron diffractometer, based on a silicon photodiode array, that overcomes these disadvantages. The instrument is compact (Fig. 1), can be used with any unmodified electron microscope, and acquires the data in a form immediately accessible by microcomputer.Major components include a RETICON 1024 element photodiode array for the de tector, an Analog Devices MAS-1202 analog digital converter and a Digital Equipment LSI 11/2 microcomputer. The photodiode array cannot detect high energy electrons without damage so an f/1.4 lens is used to focus the phosphor screen image of the diffraction pattern on to the photodiode array.


1980 ◽  
Vol 1 ◽  
Author(s):  
T. O. Yep ◽  
R. T. Fulks ◽  
R. A. Powell

ABSTRACTSuccessful annealing of p+ n arrays fabricated by ion-implantation of 11B (50 keV, 1 × 1014 cm-2) into Si (100 has been performed using a broadly rastered, low-resolution (0.25-inch diameter) electron beam. A complete 2" wafer could be uniformly annealed in ≃20 sec with high electrical activation (>75%) and small dopant redistribution (≃450 Å). Annealing resulted In p+n junctions characterized by low reverse current (≃4 nAcm-2 at 5V reverse bias) and higher carrier lifetime (80 μsec) over the entire 2" wafer. Based on the electrical characteristics of the diodes, we estimate that the electron beam anneal was able to remove ion implantation damage and leave an ordered substrate to a depth of 5.5 m below the layer junction.


1986 ◽  
Vol 47 (C8) ◽  
pp. C8-143-C8-147 ◽  
Author(s):  
A. RETOURNARD ◽  
M. LOOS ◽  
I. ASCONE ◽  
J. GOULON ◽  
M. LEMONNIER ◽  
...  

1983 ◽  
Vol 27 ◽  
Author(s):  
H. Kanber ◽  
M. Feng ◽  
J. M. Whelan

ABSTRACTArsenic and argon implantation damage is characterized by Rutherford backscattering in GaAs undoped VPE buffer layers grown on Cr-O doped semi-insulating substrates and capless annealed in a H2 −As4 atmosphere provided by AsH3. The damage detected in the RBS channeled spectra varies as a function of the ion mass, the implant depth and the annealing temperature of the stress-free controlled atmosphere technique. This damage is discussed in terms of the stoichiometric disturbances introduced by the implantation process. The as-implanted and annealed damage characteristics of the Ar and As implants are correlated to the electrical activation characteristics of Si and Se implants in GaAs, respectively.


1977 ◽  
Vol 31 (6) ◽  
pp. 536-541 ◽  
Author(s):  
T. E. Edmonds ◽  
Gary Horlick

Detailed spatial profiles of analyte emission in an inductively coupled plasma source have been measured using a self-scanning linear silicon photodiode array mounted vertically in the exit focal plane of a monochromator. These profiles were measured for both neutral atom and ion lines of several elements as a function of plasma power, central axial (nebulizer) flow rate, and coolant flow rate. The plasma has complex but characteristic emission spatial patterns; patterns that are highly dependent, at the submillimeter level, on both flow and power parameters of the plasma. These data also indicate that the spatial position of peak neutral atom line emission may depend on analyte excitation and/or ionization characteristics while the spatial position of peak ion line emission appears to be species independent for those elements studied.


2016 ◽  
Vol 55 (4S) ◽  
pp. 04EG05 ◽  
Author(s):  
Kenji Shiojima ◽  
Shingo Murase ◽  
Shingo Yamamoto ◽  
Tomoyoshi Mishima ◽  
Tohru Nakamura

1976 ◽  
Vol 29 (11) ◽  
pp. 698-699 ◽  
Author(s):  
C. O. Bozler ◽  
J. P. Donnelly ◽  
W. T. Lindley ◽  
R. A. Reynolds

Sign in / Sign up

Export Citation Format

Share Document