Micromagnetic studies of domain structures and switching properties in a magnetoresistive random access memory cell

2005 ◽  
Vol 97 (10) ◽  
pp. 10E310 ◽  
Author(s):  
Guoguang Wu ◽  
Juan Yu ◽  
Fulin Wei ◽  
Xiaoxi Liu ◽  
Dan Wei
MRS Bulletin ◽  
2004 ◽  
Vol 29 (11) ◽  
pp. 818-821 ◽  
Author(s):  
G. Grynkewich ◽  
J. Åkerman ◽  
P. Brown ◽  
B. Butcher ◽  
R.W. Dave ◽  
...  

AbstractMagnetoresistive random-access memory (MRAM) is a new memory technology that is nearing commercialization. MRAM integrates a magnetic tunnel junction (MTJ) device with standard silicon-based microelectronics, resulting in a combination of qualities not found in other memory technologies. For example, MRAM is nonvolatile, has unlimited read and write endurance, and is capable of high-speed read and write operations. In this article, we will describe the fundamentals of an MTJ-based MRAM as well as recent important technology developments in the areas of magnetic materials and memory cell architecture. In addition, we will compare the present and future capabilities of MRAM to those of existing memory technologies such as static RAM and flash memory.


1997 ◽  
Vol 81 (8) ◽  
pp. 3992-3994 ◽  
Author(s):  
E. Y. Chen ◽  
S. Tehrani ◽  
T. Zhu ◽  
M. Durlam ◽  
H. Goronkin

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1454
Author(s):  
Yoshihiro Sugiura ◽  
Toru Tanzawa

This paper describes how one can reduce the memory access time with pre-emphasis (PE) pulses even in non-volatile random-access memory. Optimum PE pulse widths and resultant minimum word-line (WL) delay times are investigated as a function of column address. The impact of the process variation in the time constant of WL, the cell current, and the resistance of deciding path on optimum PE pulses are discussed. Optimum PE pulse widths and resultant minimum WL delay times are modeled with fitting curves as a function of column address of the accessed memory cell, which provides designers with the ability to set the optimum timing for WL and BL (bit-line) operations, reducing average memory access time.


2006 ◽  
Vol 45 (5A) ◽  
pp. 3955-3958 ◽  
Author(s):  
X. S. Miao ◽  
L. P. Shi ◽  
H. K. Lee ◽  
J. M. Li ◽  
R. Zhao ◽  
...  

ACS Nano ◽  
2014 ◽  
Vol 8 (8) ◽  
pp. 7793-7800 ◽  
Author(s):  
Zhiguang Wang ◽  
Yue Zhang ◽  
Yaojin Wang ◽  
Yanxi Li ◽  
Haosu Luo ◽  
...  

2020 ◽  
Vol 29 (01n04) ◽  
pp. 2040010
Author(s):  
R. H. Gudlavalleti ◽  
B. Saman ◽  
R. Mays ◽  
Evan Heller ◽  
J. Chandy ◽  
...  

This paper presents the peripheral circuitry for a multivalued static random-access memory (SRAM) based on 2-bit CMOS cross-coupled inverters using spatial wavefunction switched (SWS) field effect transistors (SWSFETs). The novel feature is a two quantum well/quantum dot channel n-SWSFET access transistor. The reduction in area with four-bit storage-per-cell increases the memory density and efficiency of the SRAM array. The SWSFET has vertically stacked two-quantum well/quantum dot channels between the source and drain regions. The upper or lower quantum charge locations in the channel region is based on the input gate voltage. The analog behavioral modeling (ABM) of the SWSFET device is done using conventional BSIM 3V3 device parameters in 90 nm technology. The Cadence circuit simulations for the proposed memory cell and addressing/peripheral circuitry are presented.


Sign in / Sign up

Export Citation Format

Share Document