Local modifications of magnetism and structure in FePt (001) epitaxial thin films by focused ion beam: Two-dimensional perpendicular patterns

2008 ◽  
Vol 104 (5) ◽  
pp. 053907 ◽  
Author(s):  
F. Albertini ◽  
L. Nasi ◽  
F. Casoli ◽  
S. Fabbrici ◽  
P. Luches ◽  
...  
2004 ◽  
Vol 126 (4) ◽  
pp. 457-464 ◽  
Author(s):  
Ki-Ju Kang ◽  
Severine Darzens ◽  
Gee-Seob Choi

Recently, a new method for residual stress measurement in thin films by using the focused ion beam (FIB) has been proposed by the authors. It is based on the combined capability of the FIB imaging system and of high-resolution strain mapping software (VIC-2D). A simple equation based on two-dimensional elasticity is used to evaluate the residual stress from the displacements due to introducing a slot. The slot length is assumed to be much larger than the slot width or depth. And the effect of the slot width was neglected. However, it is often hard, depending on film materials, to introduce a narrow and deep slot by FIB. In this work some practical issues regarding the slot geometry are addressed. Through two- and three-dimensional finite element analyses, it is explored how the slot length, width and measurement location affect the displacements which are the basic data for residual stress evaluation. As a result, the validity and limit of the equations based on two-dimensional elasticity are evaluated. Also, the effect of material dissimilarity between film and substrate is explored. Finally, examples for a diamond-like carbon film on glass substrate and an aluminum oxide film thermally grown upon an alloy are presented.


1999 ◽  
Vol 594 ◽  
Author(s):  
R. Spolenak ◽  
C. A. Volkert ◽  
K. Takahashi ◽  
S. Fiorillo ◽  
J. Miner ◽  
...  

AbstractIt is well known that the mechanical properties of thin films depend critically on film thickness However, the contributions from film thickness and grain size are difficult to separate, because they typically scale with each other. In one study by Venkatraman and Bravman, Al films, which were thinned using anodic oxidation to reduce film thickness without changing grain size, showed a clear increase in yield stress with decreasing film thickness.We have performed a similar study on both electroplated and sputtered Cu films by using chemical-mechanical polishing (CMP) to reduce the film thickness without changing the grain size. Stress-temperature curves were measured for both the electroplated and sputtered Cu films with thicknesses between 0.1 and 1.8 microns using a laser scanning wafer curvature technique. The yield stress at room temperature was found to increase with decreasing film thickness for both sets of samples. The sputtered films, however, showed higher yield stresses in comparison to the electroplated films. Most of these differences can be attributed to the different microstructures of the films, which were determined by focused ion beam (FIB) microscopy and x-ray diffraction.


2019 ◽  
Vol 493 ◽  
pp. 271-278
Author(s):  
R. Ribeiro-Andrade ◽  
T.L. Vasconcelos ◽  
R.M.S. Kawabata ◽  
M.P. Pires ◽  
P.L. Souza ◽  
...  

2006 ◽  
Vol 960 ◽  
Author(s):  
Koji Sato ◽  
Chiemi Ishiyama ◽  
Masato Sone ◽  
Yakichi Higo

ABSTRACTWe studied the effects of phosphorus (P) on Ni nanocrystalline morphology formed by focused ion beam (FIB) irradiation for Ni-P amorphous alloy thin films. The P content in the amorphous alloy was varied from 8 to 12 wt.%. The nanocrystals induced by the FIB irradiation for Ni-11.8, 8.9, 7.9 wt.% amorphous alloy had an f.c.c. structure and showed unique crystallographic orientation relationships to the geometry of the focused ion beam, that is, {111}f.c.c. parallel to the irradiated plane and <110>f.c.c. parallel to the projected ion beam direction, respectively. The Ni nanocrystals precipitated like aggregates with decreasing of the P content. These results represent that the P content does not affect crystallographic orientation relationships, while influences the precipitation distribution of Ni nanocrystals generated by the FIB irradiation.


2012 ◽  
Vol 717-720 ◽  
pp. 889-892 ◽  
Author(s):  
Hamidreza Zamani ◽  
Seung Wan Lee ◽  
Amir Avishai ◽  
Christian A. Zorman ◽  
R. Mohan Sankaran ◽  
...  

We report on experimental explorations of using focused ion beam (FIB) nanomachining of different types of silicon carbide (SiC) thin membranes, for making robust, high-quality stencil masks for new emerging options of nanoscale patterning. Using thin films and membranes in polycrystalline SiC (poly-SiC), 3C-SiC, and amorphous SiC (a-SiC) with thicknesses in the range of t~250nm−1.6μm, we have prototyped a series of stencil masks, with nanoscale features routinely down to ~100nm.


2012 ◽  
Vol 520 (6) ◽  
pp. 2073-2076 ◽  
Author(s):  
Xu Song ◽  
Kong Boon Yeap ◽  
Jing Zhu ◽  
Jonathan Belnoue ◽  
Marco Sebastiani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document