scholarly journals Technological and Sensory Properties of Baby Purees Formulated with Andean Grains and Dried with Different Methods

Proceedings ◽  
2020 ◽  
Vol 53 (1) ◽  
pp. 13
Author(s):  
María Dolores Jiménez ◽  
Manuel Oscar Lobo ◽  
Norma Cristina Sammán

The aim of this work was to compare different cooking–drying methods to obtain dehydrated baby purees. Flours of quinoa and amaranth (native and germinated) were used to formulate them. Dry powders (DPs) were obtained by lyophilization (LD), convection (CD), and extrusion (ED). Proximal composition, particle size and morphology, water absorption capacity, and solubility were evaluated in DPs. Color, texture profile (TP), and sensory characteristics were determined in fresh pure and rehydrated powders (RPs). The LD particles were smaller and homogeneous; CD showed collapsed particles, and ED presented agglomerated particles. Different drying methods influenced the rehydration properties of DPs, as well as the color, TP, and sensory evaluation of RPs. The best method to obtain dehydrated baby purees was extrusion.

Author(s):  
Youssef El Moussi ◽  
Laurent Clerc ◽  
Jean-Charles Benezet

The use of bio-based concretes performed with lignocellulosic aggregates constitute an interesting solution for reducing the energy consumption, greenhouse gas emissions and CO2 generated by the building sector. Indeed, bio-based materials could be used as an alternative of traditional materials such as expended polystyrene and mineral resources (e.g. glass and rock wools) for insulation. Furthermore, these bio-based concretes are known for their interesting insulation properties, indeed they allow to enhance thermal properties of buildings and enables moisture management which lead to design efficient building materials. For this purpose, bio-based concrete using rice straw as aggregate are studied in this present work. The impact of the characteristics of rice straw particle (particle size distribution, bulk density, and water absorption capacity, etc.) on both the mechanical and thermal properties of the bio-based concrete are investigated. Five formulations of rice straw concrete are examined, compared and then classified in terms of insulation properties and mechanical properties. The assessments are based on the measurement of density and thermal conductivity. The variation of compressive strength in function of the characteristics (mean particle length) of rice straw particle are assessed and discussed. The investigation covers also the porosity and density. Tests are also carried out on agricultural by-products with a view to highlight their chemical, physical and structural proprieties. The results show that the use of large particles with low water absorption capacity induce lighter concretes with the density between 339 and 505 kg/m3 and lead to a high compressive strength with a high mechanical deformability. Furthermore, it appears that an increase in the average length of rice straw particle lead to decrease of thermal conductivity of bio-based concretes. It varies from 0.062 to 0.085 W/(m.K).


2021 ◽  
pp. 60-71
Author(s):  
Assiéné Agamou Julien Armel ◽  
Fombang Nig Edith ◽  
Mbofung Carl Moses

Objective: This study aims to determine the influence of the contents of compounds and particle size on the functional properties of leaves powders of M. oleifera. Methodology: The leaves were collected from three farms in the localities of Mbouda and Maroua and processed in powders. The proximate composition, some functional properties such as particle size, true Water Absorption Capacity (WACt), apparent Water Absorption Capacity (WACa), Water Solubility Index (WSI), Oil Holding Capacity (OHC), and Bulk density were determined. Results: The mean contents of young and mature leaves powders are 24.96 ± 0.29 and 23.13 ± 0.50 g/100 DM in total proteins; 34.26 ± 0.52 and 29.11 ± 1.44 g/100g DM in available carbohydrate, 8.34 ± 0.64 and 8.34 ± 0.68 g/100g DM in total lipids, 8.75 ± 0.74 and 9.08 ± 0.48 g/100g DM in total ash, 21.13 ± 1.34 and 27.14 ± 1.04 g/100g DM in total fibers, respectively. The particle size of powders is majority large. The fiber's contents significantly affect the increase of rehydration properties and the OHC, while the large particle size, the density. Values of WACt and WACa are 27.02 ± 0.20 and 32.88 ± 1.24 % in young leaves and 28.98 ± 0.15 and 35.88 ± 1.02 % in mature leaves, respectively. The WSI and OHC are 3.02 ± 0.06 and 257 ± 1% in young leaves and 3.5 ± 0.04 and 261 ± 2 % in mature leaves, respectively. The Bulk density is 0.42 ± 0.01 g/ml in young leaves and 0.39 ± 0.01 in mature leaves. Conclusion: Functional properties of M. oleifera leave powders do not always depend on the contents of compounds and particle size distribution.


2021 ◽  
Vol 7 (1) ◽  
pp. 123-132
Author(s):  
Babalola John Olarenwaju ◽  
Olakunle Esther Jesufemi ◽  
Elutilo Oluwashola Oyedunni ◽  
Adeoti Olatunde Micheal ◽  
Adesina David Ademola

The effect of processing methods on the functional, pasting properties of flours and sensory evaluation of “amala” made from three different cultivars of yam were determined using standard analytical methods. The three cultivars of yam namely; Dioscorea caynensis “Amula and Lasinrin) and Dioscorea alata (Cote divoire) were processed using three different methods as following; (a) parboiling with steep water (omi-ogi) in aluminium pot and local clay pot (b) parboiling with clean water in aluminium pot and local clay pot (c) heating steep water omi -ogi and clean water separately at 60°C and blanching sliced yam with it in plastic bucket. The functional and sensory properties of the yam flour obtained from the three processing methods were determined using standard analytical method. Data collected were analyzed statistically to determine the Analysis of Variance (ANOVA) and the means. There were significant differences (P<0.05) in the result obtained. The bulk density, water absorption capacity, wettability, oil absorption capacity and swelling index of the yam flour ranged from 0.33±0.01 to 0.49±0.03g/ml, 7.50±0.44 to 0.50±0.44g/ml, 36.67±11.55 to 178.33±2.89secs, 1.47±0.23 to 7.40±1.06g/ml and 1.10±0.01 to 1.82±0.03g/g respectively. The peak viscosity, trough, breakdown, final viscosity, setback, peak time and pasting temperature of yam flour ranged from 1783.00±7.07 to 3682.00±2.83 cP, 1691.00±4.24 to 3533.50±3.54cP, 27.50±2.12 to 195.00±7.07cP, 2351.00±1.41 to 4332.50±3.54cP, 420.00±7.07 to 799.00±1.41cP, 7.03±0.04 to 5.10±0.14cP, 81.35±0.92 to 89.10±0.14cP respectively. The appearance, colour, taste, texture and overall acceptability of the “amala” ranged from 3.70±1.08 to 8.65±0.75, 3.70±1.03 to 8.60±0.82, 3.50±1.19 to 8.20±1.01, 3.35±1.04 to 8.50±0.95 and 3.35±0.75 to 8.60±0.75 respectively. The LLPSW (cultivar “Lasinrin” processed with local clay pot and steep water “omi-ogi”) had the highest water absorption capacity, LAPOW (cultivar “Amula” processed with aluminium pot and clean water) had the best overall acceptability. Water absorption capacity measures the extent of water retention in yam flour. It can be concluded that yam flour processed with LCPSW was the best flour from the above results on water absorption capacity.


Author(s):  
C. O. Chude ◽  
C. C. Nwagbo ◽  
E. F. Okpalanma ◽  
B. O. Uba

Lactic fermentation is commonly employed to improve protein digestibility and overall nutritional quality of grains foods. This study evaluated the functional and rheological properties of flour samples from Bambara groundnut fermented with Lactobacillus plantarum [NRRL B-4306] and Lactobacillus fermentum [NRRL B-1932] obtained from the United States Department of Agriculture. Functional profile such as particle size index, water absorption capacity, swelling capacity, and least gelation concentration of the flour were determined; as well, amylograph and maturograph evaluations were used to determine the rheological properties and the results presented as average, minimum, and maxi­mum values. Particle size determination observed that 150, 125, 105 µ orifice did not readily accommodate particles from the non-inoculated samples while the inoculated samples passed through 150 and 125 µ but did not readily pass through 105 µ orifice. Bioprocess with lactic acid bacteria increased the water absorption capacity of the flour samples from 346.5 to 386.4%, the least gelation concentration decreased from 5.3 to 4.1%, while swelling capacity increased from 14.9 to 23.2 mg/100 g for non-inoculated and inoculated flours, respectively. Rheological investigations show evaluations for amylograph and maturogram determinations. Values obtained for amylograph indicate that temperature at start of gelatinization was peak at 63.8 and 63.00C for non-fermented and LAB-fermented flour with no significant (p ˂ 0.05) difference, while temperature at maximum viscosity and maximum viscosity had significant (p ˂ 0.05) values of 92.1 and 76.00C, as well as 730 and 265 brabender units (BU), respectively. Thus, amylograph quality of the fermented flour sample was indicated by the maximum viscosity which is significantly higher in the case of non-inoculated flour sample. The maturograph evaluation also recorded the maturation behavior of the dough prepared from the test flours after the proofing time (fermentation rest) by means of a sensing probe which records the elasticity of the mature dough every 2 min and produces the typical zigzag form of the maturogram. This action was recorded in maturograph units (MU) on the strip-chart with values of 44 and 28 min for final proof time, 750 and 610 MU for dough level, 210 and 220 MU for dough elasticity, as well as 10 and 12 min for proofing stability, determined respectively for non-fermented and LAB-fermented flour samples. LAB-fermentation demonstrated to improve the functionality and rheology of Bambara groundnut flour and the production process could be further controlled to achieve products of optimal quality.


2021 ◽  
Vol 1 (1) ◽  
pp. 32-35
Author(s):  
Marine Ashot Kalantaryan ◽  
Avetik Artavazd Arzumanyan

Water absorption capacity  of   Irind  mine pumice depending on the particle size and absorption time is presented in the  paper.  Irind pumice  is an aluminosilicate rock, with well-developed porosity, mechanical strength, high buoyancy, chemically inert, eco-friendly and  exhibits sufficient water absorption capacities. The examination of the pumice by X-ray diffractometry has shown that it is a volcanic rock and is composed of cristobalite and coesite. The following particle sizes were selected for the study: 1.5… 2.0 mm, 2.5 ... 5.0 mm.  Water absorption capacity of pumice was determined depending on the absorption period. The maximum water absorption was  observed for particle  sizes ranging from 2.5 to 5.0 mm.


2012 ◽  
pp. 385-388 ◽  
Author(s):  
Azadeh Saadatmandi ◽  
Mohammad Elahi ◽  
Reza Farhoosh ◽  
Mahdi Karimi

The incorporation of sugar beet fiber (0–5%) to tortilla chips and the effects on the chemical and sensory properties were studied. Addition of sugar beet fiber (SBF) led to an increasing of water absorption capacity, ash content and darkness while lowering the protein content and oil absorption. Sensory evaluation showed that the overall acceptability of tortilla chips reduces if adding more than 2% SBF.


RSC Advances ◽  
2015 ◽  
Vol 5 (18) ◽  
pp. 13331-13340 ◽  
Author(s):  
T. N. Ng ◽  
X. Q. Chen ◽  
K. L. Yeung

Flow-synthesis of mesoporous silica allows deliberate and precise control over the size and shapes and enables the preparation of complex microstructures (i.e., hollow spheres).


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 228
Author(s):  
Marina Schopf ◽  
Katharina Anne Scherf

Vital gluten is often used in baking to supplement weak wheat flours and improve their baking quality. Even with the same recipe, variable final bread volumes are common, because the functionality differs between vital gluten samples also from the same manufacturer. To understand why, the protein composition of ten vital gluten samples was investigated as well as their performance in a microbaking test depending on the water content in the dough. The gluten content and composition as well the content of free thiols and disulfide bonds of the samples were similar and not related to the specific bread volumes obtained using two dough systems, one based on a baking mixture and one based on a weak wheat flour. Variations of water addition showed that an optimal specific volume of 1.74–2.38 mL/g (baking mixture) and 4.25–5.49 mL/g (weak wheat flour) was reached for each vital gluten sample depending on its specific water absorption capacity.


Sign in / Sign up

Export Citation Format

Share Document