scholarly journals Some blackhole and compactification solutions of noncanonical global monopole in 4-dimensional spacetime

2017 ◽  
Author(s):  
I. Prasetyo ◽  
H. S. Ramadhan
2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Thiago R. P. Caramês ◽  
J. M. Hoff da Silva

AbstractWe investigate a braneworld model generated by a global monopole in the context of Brans–Dicke gravity. After solving the dynamical equations we found a model capable to alleviate the so-called hierarchy problem. The obtained framework is described by a hybrid compactification scheme endowed with a seven-dimensional spacetime, in which the brane has four non-compact dimensions and two curled extra dimensions. The relevant aspects of the resulting model are studied and the requirements to avoid the well known seesaw-like behavior are discussed. We show that under certain conditions it is possible to circumvent such a pathological behavior that characterizes most of the models that exhibit hybrid compactification. Lastly, we deepen our analysis by considering possible extensions of this model to a setup with multiple branes and orbifold-like extra dimension. For this, we compute the consistency conditions to be obeyed by this more general configuration as predicted by the braneworld sum rules formalism. This study indicates the possibility of exclusively positive brane tensions in the model.


2005 ◽  
Vol 20 (21) ◽  
pp. 1627-1634 ◽  
Author(s):  
F. RAHAMAN ◽  
P. GHOSH ◽  
M. KALAM ◽  
K. GAYEN

We investigate the spacetime of a global monopole in a five-dimensional spacetime in the presence of the cosmological term. Also the gravitational properties of the monopole solution are discussed.


Author(s):  
Nicholas Manton ◽  
Nicholas Mee

The book is an inspirational survey of fundamental physics, emphasizing the use of variational principles. Chapter 1 presents introductory ideas, including the principle of least action, vectors and partial differentiation. Chapter 2 covers Newtonian dynamics and the motion of mutually gravitating bodies. Chapter 3 is about electromagnetic fields as described by Maxwell’s equations. Chapter 4 is about special relativity, which unifies space and time into 4-dimensional spacetime. Chapter 5 introduces the mathematics of curved space, leading to Chapter 6 covering general relativity and its remarkable consequences, such as the existence of black holes. Chapters 7 and 8 present quantum mechanics, essential for understanding atomic-scale phenomena. Chapter 9 uses quantum mechanics to explain the fundamental principles of chemistry and solid state physics. Chapter 10 is about thermodynamics, which is built around the concepts of temperature and entropy. Various applications are discussed, including the analysis of black body radiation that led to the quantum revolution. Chapter 11 surveys the atomic nucleus, its properties and applications. Chapter 12 explores particle physics, the Standard Model and the Higgs mechanism, with a short introduction to quantum field theory. Chapter 13 is about the structure and evolution of stars and brings together material from many of the earlier chapters. Chapter 14 on cosmology describes the structure and evolution of the universe as a whole. Finally, Chapter 15 discusses remaining problems at the frontiers of physics, such as the interpretation of quantum mechanics, and the ultimate nature of particles. Some speculative ideas are explored, such as supersymmetry, solitons and string theory.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
H. Babaei-Aghbolagh ◽  
Komeil Babaei Velni ◽  
Davood Mahdavian Yekta ◽  
H. Mohammadzadeh

Abstract We investigate the $$ T\overline{T} $$ T T ¯ -like flows for non-linear electrodynamic theories in D(=2n)-dimensional spacetime. Our analysis is restricted to the deformation problem of the classical free action by employing the proposed $$ T\overline{T} $$ T T ¯ operator from a simple integration technique. We show that this flow equation is compatible with $$ T\overline{T} $$ T T ¯ deformation of a scalar field theory in D = 2 and of a non-linear Born-Infeld type theory in D = 4 dimensions. However, our computation discloses that this kind of $$ T\overline{T} $$ T T ¯ flow in higher dimensions is essentially different from deformation that has been derived from the AdS/CFT interpretations. Indeed, the gravity that may be exist as a holographic dual theory of this kind of effective Born-Infeld action is not necessarily an AdS space. As an illustrative investigation in D = 4, we shall also show that our construction for the $$ T\overline{T} $$ T T ¯ operator preserves the original SL(2, ℝ) symmetry of a non-supersymmetric Born-Infeld theory, as well as $$ \mathcal{N} $$ N = 2 supersymmetric model. It is shown that the corresponding SL(2, ℝ) invariant action fixes the relationship between the $$ T\overline{T} $$ T T ¯ operator and quadratic form of the energy-momentum tensor in D = 4.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
William M. R. Simpson

AbstractThe primitive ontology approach to quantum mechanics seeks to account for quantum phenomena in terms of a distribution of matter in three-dimensional space (or four-dimensional spacetime) and a law of nature that describes its temporal development. This approach to explaining quantum phenomena is compatible with either a Humean or powerist account of laws. In this paper, I offer a powerist ontology in which the law is specified by Bohmian mechanics for a global configuration of particles. Unlike in other powerist ontologies, however, this law is not grounded in a structural power that is instantiated by the global configuration. Instead, I combine the primitive ontology approach with Aristotle’s doctrine of hylomorphism to create a new metaphysical model, in which the cosmos is a hylomorphic substance with an intrinsic power to choreograph the trajectories of the particles.


2001 ◽  
Vol 16 (05) ◽  
pp. 669-676
Author(s):  
K. S. STELLE

We show how the Randall-Sundrum geometry, which has been proposed as a scenario for the universe realized as a 3-brane embedded in a 5-dimensional spacetime, arises naturally as an S5 dimensional reduction of a supersymmetric 3-brane of type IIB supergravity. In this construction, the S5 scale-setting "breathing mode" plays a crucial rôle, permitting one to evade certain "no-go" claims for the possibility of such a supersymmetric realization.


2005 ◽  
Vol 14 (12) ◽  
pp. 2347-2353 ◽  
Author(s):  
CHRIS CLARKSON ◽  
ROY MAARTENS

If string theory is correct, then our observable universe may be a three-dimensional "brane" embedded in a higher-dimensional spacetime. This theoretical scenario should be tested via the state-of-the-art in gravitational experiments — the current and upcoming gravity-wave detectors. Indeed, the existence of extra dimensions leads to oscillations that leave a spectroscopic signature in the gravity-wave signal from black holes. The detectors that have been designed to confirm Einstein's prediction of gravity waves, can in principle also provide tests and constraints on string theory.


Sign in / Sign up

Export Citation Format

Share Document