scholarly journals Reorganization of CDW stacking in 1T-TaS2 by an in-plane electrical bias

APL Materials ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 111103
Author(s):  
Weijian Li ◽  
Gururaj V. Naik
Keyword(s):  
2019 ◽  
Author(s):  
Gergely Samu ◽  
R.A. Scheidt ◽  
A. Balog ◽  
C. Janáky ◽  
P.V. Kamat

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1198
Author(s):  
Stuart McMichael ◽  
Pilar Fernández-Ibáñez ◽  
John Anthony Byrne

The photoexcitation of suitable semiconducting materials in aqueous environments can lead to the production of reactive oxygen species (ROS). ROS can inactivate microorganisms and degrade a range of chemical compounds. In the case of heterogeneous photocatalysis, semiconducting materials may suffer from fast recombination of electron–hole pairs and require post-treatment to separate the photocatalyst when a suspension system is used. To reduce recombination and improve the rate of degradation, an externally applied electrical bias can be used where the semiconducting material is immobilised onto an electrically conducive support and connected to a counter electrode. These electrochemically assisted photocatalytic systems have been termed “photoelectrocatalytic” (PEC). This review will explain the fundamental mechanism of PECs, photoelectrodes, the different types of PEC reactors reported in the literature, the (photo)electrodes used, the contaminants degraded, the key findings and prospects in the research area.


Author(s):  
Tae Hwa Jeon ◽  
Bupmo Kim ◽  
Chuhyung Kim ◽  
Chuan Xia ◽  
Haotian Wang ◽  
...  

An external bias-free photoelectrochemical system containing solid polymer electrolytes achieves efficient and durable synthesis of pure (electrolyte-free) aqueous H2O2 solution.


Nano Letters ◽  
2016 ◽  
Vol 16 (11) ◽  
pp. 7013-7018 ◽  
Author(s):  
Quentin Jeangros ◽  
Martial Duchamp ◽  
Jérémie Werner ◽  
Maximilian Kruth ◽  
Rafal E. Dunin-Borkowski ◽  
...  

2009 ◽  
Vol 3 ◽  
pp. SART.S1050
Author(s):  
Caroline L. Strasinger ◽  
Nicole N. Scheff ◽  
Ji Wu ◽  
Bruce J. Hinds ◽  
Audra L. Stinchcomb

Transdermal systems are attractive methods of drug administration specifically when treating patients for drug addiction. Current systems however are deficient in therapies that allow variable flux values of drug, such as nicotine for smoking cessation or complex dosing regimens using clonidine when treating opioid withdrawal symptoms. Through the use of functionalized carbon nanotube (CNT) membranes, drug delivery to the skin can be controlled by applying a small electrical bias to create a programmable drug delivery system. Clearly, a transdermal patch system that can be tailored to an individual's needs will increase patient compliance as well as provide much more efficient therapy. The purpose of this paper is to discuss the applicability of using carbon nanotube membranes in transdermal systems for treatment of drug abuse.


2006 ◽  
Vol 518 ◽  
pp. 35-40
Author(s):  
J. Radovanović ◽  
V. Milanović ◽  
Z. Ikonić ◽  
D. Indjin

We have analyzed the spin-filtering effects of the electron current in asymmetric ZnSe/Zn1-xMnxSe multilayer structures, under the influence of both an external magnetic field and a bias voltage. In this type of semiconductor systems, conduction band electrons interact with 3d electrons of the magnetic Mn2+ ions. Because of this sp-d exchange interaction, an external magnetic field modulates the effective potential profile seen by spin-up and spin-down electrons, giving rise to a large Zeeman effect. It is found that the degree of spin polarization changes significantly when the electrical bias is switched from forward to reverse, thus the proposed structure displays obvious behavior of spin-filter diode. This originates from the effective “lifting” of the potential for spin-up electrons, which tunnel through actual potential barriers. Structural parameters optimization, with the goal of maximizing the spin-filtering coefficient, was performed by using simulated annealing algorithm. The described effect may be important for designing new tunable spin-based multifunctional semiconductor devices.


1987 ◽  
Vol 110 ◽  
Author(s):  
R. N. Leyden ◽  
D. I. Basiulis

AbstractA study was made of the adhesion of insulating polymer coatings under long term exposure to electrical bias. Since a common mode of failure in implanted devices is the penetration of water into poorly adhering insulation/conductor interfaces followed by electrolytic degradation, development of processes, primers, and insulators with good adhesion that resist the effects of water were sought. Polyimide coatings were tested for their ion barrier properties by immersion of insulated comb patterns in saline with 9 V D.C. bias between the comb fingers. Leakage currents, measured over three years exposure, increased from several picoamps initially to several nanoamps in surviving specimens. Subsequent studies showed that dramatic improvements in the moisture durability of the adhesion could be obtained using Hitachi's aluminum chelate type primer. Whereas the peel strength of polyimide on unprimed platinum fell more than 90% after several hours of boiling saline exposure, the peel strength of polyimide coatings on primed surfaces remained at over 80% of their initial values. ESCA analysis of the peel interfaces showed that both aluminum oxide and polyimide remain on the substrate after peeling back the polyimide. This suggests a combination of cohesive and adhesive failure at the primer/polyimide interface. The effects of exposure of the polymer/substrate interfaces (edges) to saline and electrochemical stress were examined by patterning circular openings in the polyimide. A 10 V anodic potential was found to damage adhesion to titanium as far as 75 microns away from the edge. Pulsing at 500 Hz, 1 V peak to peak was found to have no measurable effect in the short term.


1995 ◽  
Vol 405 ◽  
Author(s):  
D. Dimova-Malinovska ◽  
M. Tzolov ◽  
M. Kamenova ◽  
N. Tzenov ◽  
M. Sendova-Vassileva ◽  
...  

AbstractThe results of photoelectric properties and electroluminescent studies of structures ZnO/porous Si/p-type c-Si/Al and ZnO/porous Si/p-n c-Si junction/Al are presented. Porous Si is prepared by stain etching of c-Si covered with thin Al film. The transparent ZnO film allows light emission through the top surface of the device under forward electrical bias. Photocurrent is observed under reverse bias and a photovoltaic effect is measured on the p-n junction PS device. The model based on injection of minority carriers through a narrow energy barrier into the porous Si and the presence of the barrier at the interface porous Si/c-Si is suggested for describing the electrical, photoelectric and luminescent properties of the structures.


2021 ◽  
Vol 43 ◽  
pp. 93-109
Author(s):  
Ogomoditse Oduetse Moatlhodi ◽  
Ravi Samikannu ◽  
Nonofo M.J. Ditshego

This present work is about simulating and analysing a Vertical Cavity Surface Emitting Laser (VCSEL) structure used in optical fibre communication systems. In this paper a VCSEL structure made of seven Quantum Wells of Indium Gallium Arsenide Phosphide (InGaAsP) emitting at 1550 nm is simulated. The device is analysed looking at the following characteristics: Direct current current and voltage (IV) characteristics, light power against electrical bias, optical gain against electrical bias, light distribution over the structure, output power and threshold current. Specification of material characteristics, ordinary physical models settings, initial VCSEL biasing, mesh declarations, declaration of laser physical models, their optical and electrical parameters were defined using Atlas syntax. Mirror ratings and quantum wells are the two main parameters that were studied and analysed to come up with structure trends. By determining important device parameters such as proper selection of the emission wavelength and choice of material; a VCSEL with an output power of 9.5 mW was simulated and compared with other structures.


Sign in / Sign up

Export Citation Format

Share Document