Classification of attack mechanisms and research of protection methods for systems using machine learning and artificial intelligence algorithms

2021 ◽  
Author(s):  
Ilya Volodin ◽  
Michael Putyato ◽  
Alexander Makaryan ◽  
Vyacheslav Evglevsky ◽  
Michael Evsyukov
Author(s):  
E. Grilli ◽  
E. M. Farella ◽  
A. Torresani ◽  
F. Remondino

<p><strong>Abstract.</strong> In the last years, the application of artificial intelligence (Machine Learning and Deep Learning methods) for the classification of 3D point clouds has become an important task in modern 3D documentation and modelling applications. The identification of proper geometric and radiometric features becomes fundamental to classify 2D/3D data correctly. While many studies have been conducted in the geospatial field, the cultural heritage sector is still partly unexplored. In this paper we analyse the efficacy of the geometric covariance features as a support for the classification of Cultural Heritage point clouds. To analyse the impact of the different features calculated on spherical neighbourhoods at various radius sizes, we present results obtained on four different heritage case studies using different features configurations.</p>


Author(s):  
Shatakshi Singh ◽  
Kanika Gautam ◽  
Prachi Singhal ◽  
Sunil Kumar Jangir ◽  
Manish Kumar

The recent development in artificial intelligence is quite astounding in this decade. Especially, machine learning is one of the core subareas of AI. Also, ML field is an incessantly growing along with evolution and becomes a rise in its demand and importance. It transmogrified the way data is extracted, analyzed, and interpreted. Computers are trained to get in a self-training mode so that when new data is fed they can learn, grow, change, and develop themselves without explicit programming. It helps to make useful predictions that can guide better decisions in a real-life situation without human interference. Selection of ML tool is always a challenging task, since choosing an appropriate tool can end up saving time as well as making it faster and easier to provide any solution. This chapter provides a classification of various machine learning tools on the following aspects: for non-programmers, for model deployment, for Computer vision, natural language processing, and audio for reinforcement learning and data mining.


2019 ◽  
Vol 8 (6) ◽  
pp. 872 ◽  
Author(s):  
Alam ◽  
Le ◽  
Lim ◽  
Chan ◽  
Yao

Artificial intelligence (AI) classification holds promise as a novel and affordable screening tool for clinical management of ocular diseases. Rural and underserved areas, which suffer from lack of access to experienced ophthalmologists may particularly benefit from this technology. Quantitative optical coherence tomography angiography (OCTA) imaging provides excellent capability to identify subtle vascular distortions, which are useful for classifying retinovascular diseases. However, application of AI for differentiation and classification of multiple eye diseases is not yet established. In this study, we demonstrate supervised machine learning based multi-task OCTA classification. We sought 1) to differentiate normal from diseased ocular conditions, 2) to differentiate different ocular disease conditions from each other, and 3) to stage the severity of each ocular condition. Quantitative OCTA features, including blood vessel tortuosity (BVT), blood vascular caliber (BVC), vessel perimeter index (VPI), blood vessel density (BVD), foveal avascular zone (FAZ) area (FAZ-A), and FAZ contour irregularity (FAZ-CI) were fully automatically extracted from the OCTA images. A stepwise backward elimination approach was employed to identify sensitive OCTA features and optimal-feature-combinations for the multi-task classification. For proof-of-concept demonstration, diabetic retinopathy (DR) and sickle cell retinopathy (SCR) were used to validate the supervised machine leaning classifier. The presented AI classification methodology is applicable and can be readily extended to other ocular diseases, holding promise to enable a mass-screening platform for clinical deployment and telemedicine.


Author(s):  
Seyed Omid Mohammadi ◽  
Ahmad Kalhor

The rapid progress of computer vision, machine learning, and artificial intelligence combined with the current growing urge for online shopping systems opened an excellent opportunity for the fashion industry. As a result, many studies worldwide are dedicated to modern fashion-related applications such as virtual try-on and fashion synthesis. However, the accelerated evolution speed of the field makes it hard to track these many research branches in a structured framework. This paper presents an overview of the matter, categorizing 110 relevant articles into multiple sub-categories and varieties of these tasks. An easy-to-use yet informative tabular format is used for this purpose. Such hierarchical application-based multi-label classification of studies increases the visibility of current research, promotes the field, provides research directions, and facilitates access to related studies.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 384 ◽  
Author(s):  
M V.D. Prasad ◽  
B JwalaLakshmamma ◽  
A Hari Chandana ◽  
K Komali ◽  
M V.N. Manoja ◽  
...  

Machine learning is penetrating most of the classification and recognition tasks performed by a computer. This paper proposes the classification of flower images using a powerful artificial intelligence tool, convolutional neural networks (CNN). A flower image database with 9500 images is considered for the experimentation. The entire database is sub categorized into 4. The CNN training is initiated in five batches and the testing is carried out on all the for datasets. Different CNN architectures were designed and tested with our flower image data to obtain better accuracy in recognition. Various pooling schemes were implemented to improve the classification rates. We achieved 97.78% recognition rate compared to other classifier models reported on the same dataset.


2021 ◽  
Author(s):  
Thomas Gengenbach ◽  
Kerstin Schoch

Previous studies on classification of fine art show that features of paintings can be captured and categorized using machine learning approaches. This progress can also benefit art psychology by facilitating data collection on artworks without the need to recruit experts as raters. In this study a machine learning approach is used to predict the ratings of RizbA, a Rating instrument for two-dimensional pictorial works. Based on a pre-trained model, the algorithm was fine-tuned via transfer learning on 886 pictorial works by contemporary professional artists and non-professionals. As quality criterion, artificial intelligence raters (ART) are compared with generic raters (GR) created from the real human expert raters, using error rate and mean squared error (MSE). ART ratings have been found to have the same error range as randomly chosen human ratings. Therefore, they can be seen as equivalent to real human expert raters for almost all items in RizbA. Further training with more data will close the gap to the human raters on all items.


Author(s):  
Abraham Pouliakis ◽  
Vasileia Damaskou ◽  
Niki Margari ◽  
Efrossyni Karakitsou ◽  
Vasilios Pergialiotis ◽  
...  

The aim of this study is to compare machine learning algorithms (MLAs) in the discrimination between benign and malignant endometrial nuclei and lesions. Nuclei characteristics are obtained via image analysis and were measured from liquid-based cytology slides. Four hundred sixteen histologically confirmed patients were involved, 168 healthy, and the remaining with pathological endometrium. Fifty percent of the cases were used to three MLAs: a feedforward artificial neural network (ANN) trained by the backpropagation algorithm, a learning vector quantization (LVQ), and a competitive learning ANN. The outcome of this process was the classification of cell nuclei as benign or malignant. Based on the nuclei classification, an algorithm to classify individual patients was constructed. The sensitivity of the MLAs in training set for nuclei classification was in the range of 77%-84%. Patients' classification had sensitivity in the range of 90%-98%. These findings indicate that MLAs have good performance for the classification of endometrial nuclei and lesions.


2021 ◽  
Author(s):  
Rahul Ranjan ◽  
Richard Partl ◽  
Ricarda Erhart ◽  
Nithin Kurup ◽  
Harald Schnidar

Although significant advancements in computer-aided diagnostics using artificial intelligence (AI) have been made, to date, no viable method for radiation-induced skin reaction (RISR) analysis and classification is available. The objective of this single-center study was to develop machine learning and deep learning approaches using deep convolutional neural networks (CNNs) for automatic classification of RISRs according to the Common Terminology Criteria for Adverse Events (CTCAE) grading system. ScarletredⓇ Vision, a novel and state-of-the-art digital skin imaging method capable of remote monitoring and objective assessment of acute RISRs was used to convert 2D digital skin images using the CIELAB color space and conduct SEV* measurements. A set of different machine learning and deep convolutional neural network-based algorithms has been explored for the automatic classification of RISRs. A total of 2263 distinct images from 209 patients were analyzed for training and testing the machine learning and CNN algorithms. For a 2-class problem of healthy skin (grade 0) versus erythema (grade ≥ 1), all machine learning models produced an accuracy of above 70%, and the sensitivity and specificity of erythema recognition were 67-72% and 72-83%, respectively. The CNN produced a test accuracy of 74%, sensitivity of 66%, and specificity of 83% for predicting healthy and erythema cases. For the severity grade prediction of a 3-class problem (grade 0 versus 1 versus 2), the test accuracy was 60-67%, and the sensitivity and specificity were 56-82%, 35-59%, and 65-72%, respectively. For estimating the severity grade of each class, the CNN obtained an accuracy of 73%, 66%, and 82%, respectively. Ensemble learning combines several individual predictions to obtain a better generalization performance. Furthermore, we exploited ensemble learning by deploying a CNN model as a meta-learner. The ensemble CNN based on bagging and majority voting shows an accuracy, sensitivity and specificity of 87%, 90%, and 82% for a 2-class problem, respectively. For a 3-class problem, the ensemble CNN shows an overall accuracy of 66%, while for each grade (0, 1, and 2) accuracies were 0.76%, 0.69%, and 0.87%, sensitivities were 0.70%, 0.57%, and 0.71%, and specificities were 0.78%, 0.75%, and 0.95%, respectively. This study is the first to focus on erythema in radiation-dermatitis and produces benchmark results using machine learning models. The outcome of this study validates that the proposed system can act as a pre-screening and decision support tool for oncologists or patients to provide fast, reliable, and efficient assessment of erythema grading.


Sign in / Sign up

Export Citation Format

Share Document