scholarly journals Clinical Application of Machine Learning-Based Artificial Intelligence in the Diagnosis, Prediction, and Classification of Cardiovascular Diseases

2021 ◽  
Author(s):  
Songren Shu ◽  
Jie Ren ◽  
Jiangping Song
Author(s):  
E. Grilli ◽  
E. M. Farella ◽  
A. Torresani ◽  
F. Remondino

<p><strong>Abstract.</strong> In the last years, the application of artificial intelligence (Machine Learning and Deep Learning methods) for the classification of 3D point clouds has become an important task in modern 3D documentation and modelling applications. The identification of proper geometric and radiometric features becomes fundamental to classify 2D/3D data correctly. While many studies have been conducted in the geospatial field, the cultural heritage sector is still partly unexplored. In this paper we analyse the efficacy of the geometric covariance features as a support for the classification of Cultural Heritage point clouds. To analyse the impact of the different features calculated on spherical neighbourhoods at various radius sizes, we present results obtained on four different heritage case studies using different features configurations.</p>


Author(s):  
Shatakshi Singh ◽  
Kanika Gautam ◽  
Prachi Singhal ◽  
Sunil Kumar Jangir ◽  
Manish Kumar

The recent development in artificial intelligence is quite astounding in this decade. Especially, machine learning is one of the core subareas of AI. Also, ML field is an incessantly growing along with evolution and becomes a rise in its demand and importance. It transmogrified the way data is extracted, analyzed, and interpreted. Computers are trained to get in a self-training mode so that when new data is fed they can learn, grow, change, and develop themselves without explicit programming. It helps to make useful predictions that can guide better decisions in a real-life situation without human interference. Selection of ML tool is always a challenging task, since choosing an appropriate tool can end up saving time as well as making it faster and easier to provide any solution. This chapter provides a classification of various machine learning tools on the following aspects: for non-programmers, for model deployment, for Computer vision, natural language processing, and audio for reinforcement learning and data mining.


2021 ◽  
Author(s):  
Ilya Volodin ◽  
Michael Putyato ◽  
Alexander Makaryan ◽  
Vyacheslav Evglevsky ◽  
Michael Evsyukov

2019 ◽  
Vol 8 (6) ◽  
pp. 872 ◽  
Author(s):  
Alam ◽  
Le ◽  
Lim ◽  
Chan ◽  
Yao

Artificial intelligence (AI) classification holds promise as a novel and affordable screening tool for clinical management of ocular diseases. Rural and underserved areas, which suffer from lack of access to experienced ophthalmologists may particularly benefit from this technology. Quantitative optical coherence tomography angiography (OCTA) imaging provides excellent capability to identify subtle vascular distortions, which are useful for classifying retinovascular diseases. However, application of AI for differentiation and classification of multiple eye diseases is not yet established. In this study, we demonstrate supervised machine learning based multi-task OCTA classification. We sought 1) to differentiate normal from diseased ocular conditions, 2) to differentiate different ocular disease conditions from each other, and 3) to stage the severity of each ocular condition. Quantitative OCTA features, including blood vessel tortuosity (BVT), blood vascular caliber (BVC), vessel perimeter index (VPI), blood vessel density (BVD), foveal avascular zone (FAZ) area (FAZ-A), and FAZ contour irregularity (FAZ-CI) were fully automatically extracted from the OCTA images. A stepwise backward elimination approach was employed to identify sensitive OCTA features and optimal-feature-combinations for the multi-task classification. For proof-of-concept demonstration, diabetic retinopathy (DR) and sickle cell retinopathy (SCR) were used to validate the supervised machine leaning classifier. The presented AI classification methodology is applicable and can be readily extended to other ocular diseases, holding promise to enable a mass-screening platform for clinical deployment and telemedicine.


Author(s):  
Seyed Omid Mohammadi ◽  
Ahmad Kalhor

The rapid progress of computer vision, machine learning, and artificial intelligence combined with the current growing urge for online shopping systems opened an excellent opportunity for the fashion industry. As a result, many studies worldwide are dedicated to modern fashion-related applications such as virtual try-on and fashion synthesis. However, the accelerated evolution speed of the field makes it hard to track these many research branches in a structured framework. This paper presents an overview of the matter, categorizing 110 relevant articles into multiple sub-categories and varieties of these tasks. An easy-to-use yet informative tabular format is used for this purpose. Such hierarchical application-based multi-label classification of studies increases the visibility of current research, promotes the field, provides research directions, and facilitates access to related studies.


2019 ◽  
Author(s):  
Lu Liu ◽  
Ahmed Elazab ◽  
Baiying Lei ◽  
Tianfu Wang

BACKGROUND Echocardiography has a pivotal role in the diagnosis and management of cardiovascular diseases since it is real-time, cost-effective, and non-invasive. The development of artificial intelligence (AI) techniques have led to more intelligent and automatic computer-aided diagnosis (CAD) systems in echocardiography over the past few years. Automatic CAD mainly includes classification, detection of anatomical structures, tissue segmentation, and disease diagnosis, which are mainly completed by machine learning techniques and the recent developed deep learning techniques. OBJECTIVE This review aims to provide a guide for researchers and clinicians on relevant aspects of AI, machine learning, and deep learning. In addition, we review the recent applications of these methods in echocardiography and identify how echocardiography could incorporate AI in the future. METHODS This paper first summarizes the overview of machine learning and deep learning. Second, it reviews current use of AI in echocardiography by searching literature in the main databases for the past 10 years and finally discusses potential limitations and challenges in the future. RESULTS AI has showed promising improvements in analysis and interpretation of echocardiography to a new stage in the fields of standard views detection, automated analysis of chamber size and function, and assessment of cardiovascular diseases. CONCLUSIONS Compared with machine learning, deep learning methods have achieved state-of-the-art performance across different applications in echocardiography. Although there are challenges such as the required large dataset, AI can provide satisfactory results by devising various strategies. We believe AI has the potential to improve accuracy of diagnosis, reduce time consumption, and decrease the load of cardiologists.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 384 ◽  
Author(s):  
M V.D. Prasad ◽  
B JwalaLakshmamma ◽  
A Hari Chandana ◽  
K Komali ◽  
M V.N. Manoja ◽  
...  

Machine learning is penetrating most of the classification and recognition tasks performed by a computer. This paper proposes the classification of flower images using a powerful artificial intelligence tool, convolutional neural networks (CNN). A flower image database with 9500 images is considered for the experimentation. The entire database is sub categorized into 4. The CNN training is initiated in five batches and the testing is carried out on all the for datasets. Different CNN architectures were designed and tested with our flower image data to obtain better accuracy in recognition. Various pooling schemes were implemented to improve the classification rates. We achieved 97.78% recognition rate compared to other classifier models reported on the same dataset.


2021 ◽  
Author(s):  
Thomas Gengenbach ◽  
Kerstin Schoch

Previous studies on classification of fine art show that features of paintings can be captured and categorized using machine learning approaches. This progress can also benefit art psychology by facilitating data collection on artworks without the need to recruit experts as raters. In this study a machine learning approach is used to predict the ratings of RizbA, a Rating instrument for two-dimensional pictorial works. Based on a pre-trained model, the algorithm was fine-tuned via transfer learning on 886 pictorial works by contemporary professional artists and non-professionals. As quality criterion, artificial intelligence raters (ART) are compared with generic raters (GR) created from the real human expert raters, using error rate and mean squared error (MSE). ART ratings have been found to have the same error range as randomly chosen human ratings. Therefore, they can be seen as equivalent to real human expert raters for almost all items in RizbA. Further training with more data will close the gap to the human raters on all items.


Author(s):  
Abraham Pouliakis ◽  
Vasileia Damaskou ◽  
Niki Margari ◽  
Efrossyni Karakitsou ◽  
Vasilios Pergialiotis ◽  
...  

The aim of this study is to compare machine learning algorithms (MLAs) in the discrimination between benign and malignant endometrial nuclei and lesions. Nuclei characteristics are obtained via image analysis and were measured from liquid-based cytology slides. Four hundred sixteen histologically confirmed patients were involved, 168 healthy, and the remaining with pathological endometrium. Fifty percent of the cases were used to three MLAs: a feedforward artificial neural network (ANN) trained by the backpropagation algorithm, a learning vector quantization (LVQ), and a competitive learning ANN. The outcome of this process was the classification of cell nuclei as benign or malignant. Based on the nuclei classification, an algorithm to classify individual patients was constructed. The sensitivity of the MLAs in training set for nuclei classification was in the range of 77%-84%. Patients' classification had sensitivity in the range of 90%-98%. These findings indicate that MLAs have good performance for the classification of endometrial nuclei and lesions.


Healthcare ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 392
Author(s):  
Nizar Ahmed ◽  
Fatih Dilmaç ◽  
Adil Alpkocak

This study aims to improve the performance of multiclass classification of biomedical texts for cardiovascular diseases by combining two different feature representation methods, i.e., bag-of-words (BoW) and word embeddings (WE). To hybridize the two feature representations, we investigated a set of possible statistical weighting schemes to combine with each element of WE vectors, which were term frequency (TF), inverse document frequency (IDF) and class probability (CP) methods. Thus, we built a multiclass classification model using a bidirectional long short-term memory (BLSTM) with deep neural networks for all investigated operations of feature vector combinations. We used MIMIC III and the PubMed dataset for the developing language model. To evaluate the performance of our weighted feature representation approaches, we conducted a set of experiments for examining multiclass classification performance with the deep neural network model and other state-of-the-art machine learning (ML) approaches. In all experiments, we used the OHSUMED-400 dataset, which includes PubMed abstracts related with specifically one class over 23 cardiovascular disease categories. Afterwards, we presented the results obtained from experiments and provided a comparison with related research in the literature. The results of the experiment showed that our BLSTM model with the weighting techniques outperformed the baseline and other machine learning approaches in terms of validation accuracy. Finally, our model outperformed the scores of related studies in the literature. This study shows that weighted feature representation improves the performance of the multiclass classification.


Sign in / Sign up

Export Citation Format

Share Document