Marine Parasitology

This comprehensive, authoritative and up-to-date work provides the definitive overview of marine parasites worldwide. It is an invaluable reference for students and researchers in parasitology and marine biology and will also be of interest to ecologists, aquaculturists and invertebrate biologists. Initial chapters review the diversity and basic biology of the different groups of marine parasites, discussing their morphology, life cycles, infection mechanisms and effects on hosts. The ecology and importance of marine parasites are discussed in the second part of the book, where contributions investigate behavioural and ecological aspects of parasitism and discuss the evolution and zoogeography of marine parasites. In addition, the economic, environmental and medical significance of these organisms is outlined, particularly their importance in aquaculture and their effects on marine mammals and birds. Written by an international team of contributors, the emphasis is on a thorough grounding in marine parasitology combined with reviews of novel concepts and cutting-edge research.

SURG Journal ◽  
2013 ◽  
Vol 6 (2) ◽  
pp. 78-92
Author(s):  
Melanie Barry ◽  
Shannon Ferraro ◽  
Kaitlyn Wagner

ZOO*4300 (Marine Biology and Oceanography) is a senior-level field course offered by the Department of Integrative Biology at the University of Guelph. This two-week course is held at the Huntsman Marine Science Centre in St. Andrew’s New Brunswick, Canada. Students enrolled in the course study various aspects of the ecology, behaviour, physiology, biochemistry and genetics of marine organisms using a variety of oceanographic techniques. The course also includes group exercises to study various intertidal and sub-tidal environments as well as boat cruises to collect plankton, benthic invertebrates, marine fish, and to observe marine mammals. The course provides excellent opportunities for students to familiarize themselves with state-of-the-art techniques involved in various branches of marine biology and oceanography and conduct an individual research project. This feature highlights three individual research projects by University of Guelph students. More information about the field course in marine biology and oceanography is accessible at the following link: http://www.uoguelph.ca/ib/undergrad/fieldcourses_marine.shtml.


2019 ◽  
Author(s):  
Jason R. Schrad ◽  
Jônatas S. Abrahão ◽  
Juliana R. Cortines ◽  
Kristin N. Parent

SummarySince their discovery, giant viruses have expanded our understanding of the principles of virology. Due to their gargantuan size and complexity, little is known about the life cycles of these viruses. To answer outstanding questions regarding giant virus infection mechanisms, we set out to determine biomolecular conditions that promote giant virus genome release. We generated four metastable infection intermediates in Samba virus (lineage A Mimiviridae) as visualized by cryo-EM, cryo-ET, and SEM. Each of these four intermediates reflects a stage that occurs in vivo. We show that these genome release stages are conserved in other, diverse giant viruses. Finally, we identified proteins that are released from Samba and newly discovered Tupanvirus through differential mass spectrometry. Our work revealed the molecular forces that trigger infection are conserved amongst disparate giant viruses. This study is also the first to identify specific proteins released during the initial stages of giant virus infection.


2019 ◽  
Vol 15 (3) ◽  
pp. 20180834 ◽  
Author(s):  
Charmain D. Hamilton ◽  
Jade Vacquié-Garcia ◽  
Kit M. Kovacs ◽  
Rolf A. Ims ◽  
Jack Kohler ◽  
...  

Global warming is inducing major environmental changes in the Arctic. These changes will differentially affect species owing to differences in climate sensitivity and behavioural plasticity. Arctic endemic marine mammals are expected to be impacted significantly by ongoing changes in their key habitats owing to their long life cycles and dependence on ice. Herein, unique biotelemetry datasets for ringed seals (RS; Pusa hispida ) and white whales (WW; Delphinapterus leucas ) from Svalbard, Norway, spanning two decades (1995–2016) are used to investigate how these species have responded to reduced sea-ice cover and increased Atlantic water influxes. Tidal glacier fronts were traditionally important foraging areas for both species. Following a period with dramatic environmental change, RS now spend significantly more time near tidal glaciers, where Arctic prey presumably still concentrate. Conversely, WW spend significantly less time near tidal glacier fronts and display spatial patterns that suggest that they are foraging on Atlantic fishes that are new to the region. Differences in levels of dietary specialization and overall behavioural plasticity are likely reasons for similar environmental pressures affecting these species differently. Climate change adjustments through behavioural plasticity will be vital for species survival in the Arctic, given the rapidity of change and limited dispersal options.


1994 ◽  
Vol 6 (2) ◽  
pp. 136-136 ◽  
Author(s):  
P.G Rodhouse ◽  
U. Piatkowski ◽  
C.C. Lu

The first systematic sampling in the Southern Ocean to capture cephalopods took place 120 years ago aboard HMS Challenger. Over the next century taxonomic knowledge was advanced by expeditions including the Mission du Cap Horn (France), the Valdivia Deep Sea Expedition (Germany), the Discovery expeditions (UK) the Eltanin (USA) and Academic Knipovitch (USSR). Over the last decade Southern Ocean cephalopod research has at last progressed beyond the descriptive phase and is rapidly joining other fields of Antarctic marine biology in its concerns with population biology and trophic systems, Although much taxonomic work remains to be done, ecological studies on the role of cephalopods in the diet of predators has been facilitated by advances in the identification of cephalopod beaks, development of opening-closing nets has allowed fine-scale distribution studies, and as methods for the study of growth, diet and biochemical genetics have advanced, so these have been applied to Southern Ocean cephalopods.


Trudy VNIRO ◽  
2020 ◽  
Vol 181 ◽  
pp. 16-32
Author(s):  
A.A. Bajtalyuk ◽  
◽  
A.V. Adrianov ◽  
V.N. Akulin ◽  
I.V. Dyujzen ◽  
...  

In 2018, in the Scientific and Educational Complex “Primorsky Oceanarium” of the National Scientific Center for Marine Biology (NSCMB) FEB RAS, a Collective Use Center (CUC) was created with scientific equipment, coastal and near-shore infrastructure, unique facilities and biological materials. In its function, this Center is a unit for cooperation between fishery science and academic science in marine biotechnology (MBC). It was organized using principles of shared access of participants to marine areas, coastal research stations, biological and instrumental basis of Marine Mammals Research facility in “Primorsky Oceanarium” MBC structure in the form of CUC can be used in addressing a wide range of tasks in implementing knowledge intensive marine biotechnologies, upgrading bionic methods in the study of aquatic organisms, carrying out field studies and tests on hydroacoustic, electrical, fishing gear and other manipulators for moving behavior of aquatic organisms and their adaptation to fishing activity. The first MBC joint research results are shown. Those studies include research on acoustic and kinematic activity and characteristics of signals of marine mammals and fish, hydroacoustic emitters testing for controlling fish behavior, experimental studies on reflective properties of aquatic irganisms, and influence of attracting and repelling hydroacoustic emitters on fish behavior in cages using modern instrumental control and observation tools.


Author(s):  
Yumei Luo ◽  
Mimi Zhang ◽  
Yapei Chen ◽  
Yaoyong Chen ◽  
Detu Zhu

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its rapid international spread has caused the coronavirus disease 2019 (COVID-19) pandemics, which is a global public health crisis. Thus, there is an urgent need to establish biological models to study the pathology of SARS-CoV-2 infection, which not only involves respiratory failure, but also includes dysregulation of other organs and systems, including the brain, heart, liver, intestines, pancreas, kidneys, eyes, and so on. Cellular and organoid models derived from human induced pluripotent stem cells (iPSCs) are ideal tools for in vitro simulation of viral life cycles and drug screening to prevent the reemergence of coronavirus. These iPSC-derived models could recapitulate the functions and physiology of various human cell types and assemble the complex microenvironments similar with those in the human organs; therefore, they can improve the study efficiency of viral infection mechanisms, mimic the natural host-virus interaction, and be suited for long-term experiments. In this review, we focus on the application of in vitro iPSC-derived cellular and organoid models in COVID-19 studies.


2016 ◽  
Vol 37 (1) ◽  
Author(s):  
M. G. Sable ◽  
D. K. Rana

Global warming is a great concern throughout the world. Being poikilothermic in nature insects are greatly affected by changing temperature. Insect will experience additional life cycles with rapid growth rate. As a result of changes in the population dynamics including distribution and migration the reliability on current insect pest ETL will be reduced. Increased insect pests outbreak will affect agricultural production. Research on basic biology of insect, population dynamics and behavior patterns should be focused to ascertain the effect of global warming on insect behavior.


Sign in / Sign up

Export Citation Format

Share Document