Season, nitrogen rate, and plant type affect nitrogen uptake and nitrogen use efficiency in rice

1998 ◽  
Vol 49 (5) ◽  
pp. 829 ◽  
Author(s):  
A. K. Borrell ◽  
A. L. Garside ◽  
S. Fukai ◽  
D. J. Reid

Studies were undertaken in the Burdekin River Irrigation Area of northern Australia to improve the efficiency of nitrogen (N) use for rice (Oryza sativa L.) production. The aim was to maximise grain yield by optimising its functional components: N uptake, efficiency of N use for dry matter production (NUEdm), and harvest index (HI). The effiects of season (wet and dry), N rate (0, 70, 140, 210, and 280 kg/ha), and plant type (maturity and stature) on N uptake, NUEdm, and HI were examined in 2 wet and 2 dry seasons. Leaf area development was closely related to N uptake. In the wet season, genotypes had similar rates of increase in leaf area index (LAI) with N uptake but differed in the level of LAI (curves were parallel). In the dry season, the relationship between N uptake and LAI was different for each genotype (curves not parallel). In both seasons cv. Newbonnet generally had a lower LAI per unit N uptake (i.e. leaf area production was not excessive) than cvv. Lemont and Starbonnet. Dry matter production and grain yield were also closely related to N uptake. At low levels of N availability (N uptake <100 kg/ha) tissue N concentrations were low and both total above-ground dry mass (AGDM) and grain yield were linearly related to N uptake. As N availability increased, N uptake and tissue N concentration increased, resulting in a deviation of the AGDM and grain yield curves from the linear at about 100 kg/haN uptake. This finally resulted in AGDM and grain yield plateauing at around 200 kg/ha N uptake. Above this level some factors other than N availability limited yield. Seasonal differences in N uptake, NUEdm, and HI were observed. Seasonal variation in the response of grain yield to N uptake was found. There was a trend for higher N uptake in the absence of fertiliser application in the wet than the dry season, and the recovery fraction was less for N rates >140 kg/ha in all seasons, i.e. fertiliser N uptake efficiency declined with increasing N rate. Nitrogen was used more effectively by the rice crop to produce grain compared with non-grain parts when average daily mean temperatures were lower during the period between panicle initiation and anthesis. Genotypic variation was found in N uptake, NUEdm, and HI. The ability to capture these components in crop improvement programs depends on the extent to which genetic linkages between N uptake and both NUEdm and HI can be broken. While our data suggest that N uptake is generally negatively correlated with both NUEdm and HI, there is some evidence that these linkages can be broken. For example, the fact that HIdid not change with increasing N uptake in Lemont and, to a lesser extent, in Newbonnet suggests that HI does not always decline with increasing N uptake. The example of Newbonnet suggests that, to some extent, it is possible to increase yield by increasing each of the functional components independently within a specific genotype.

1982 ◽  
Vol 22 (115) ◽  
pp. 76 ◽  
Author(s):  
KA Boundy ◽  
TG Reeves ◽  
HD Brooke

The effect of serial planting on dry matter production, leaf area, grain yield and yield components cf Lupinus angustifoiius (cvv. Uniwhite, Uniharvest and Unicrop) and L. albus (cv. Ultra) was investigated in field plots at Rutherglen in 1973 and 1974. Delayed planting reduced dry matter production of all cultivars, and leaf area for Ultra. Differences in dry matter partitioning were observed between the late flowering Uniharvest, and the early flowering Unicrop and Ultra. In Uniharvest, delayed plantings resulted in a greater proportion of total dry matter being produced during the flowering phase, whereas the reverse was true for Unicrop and Ultra. The later flowering cultivars showed marked grain yield and yield component reduction with later sowing. Yields were reduced by 160.6 kg/ha and 222.5 kg/ha for each week's delay in sowing Uniharvest and Uniwhite, respectively. This effect was offset in the early flowering cultivars by greater development of lateral branches. In addition, when Unicrop and Ultra were planted in April, pod and flower abortion on the main stem resulted from low temperatures at flowering time. Optimum sowing time was early April for Uniwhite and Uniharvest, and early May for Unicrop and Ultra. Excellent vegetative growth under ideal moisture conditions highlighted the poor harvest indices of lupins and the scope for genetic improvement in the genus.


1974 ◽  
Vol 10 (2) ◽  
pp. 87-95 ◽  
Author(s):  
B. A. C. Enyi

SUMMARYApplication of dimecron to cowpea plants increased grain yield, its effect being more pronounced in widely spaced plants and those planted in March. Dimecron increased grain yield by encouraging greater leaf area development, by increasing the number of flowering inflorescences and the number of pods set per inflorescence, and by decreasing the number of shrivelled pods. March planting encouraged greater dry matter production than January and May planting. Dimecron application decreased the number of Ootheca beningseni, reduced the proportion of leaf damaged by these insects, and reduced the number of plants infested with aphids and Acidodis larvae.


1984 ◽  
Vol 24 (125) ◽  
pp. 236
Author(s):  
GK McDonald ◽  
BG Sutton ◽  
FW Ellison

Three winter cereals (wheat varieties Songlen and WW 15, triticale variety Satu) were grown after cotton or summer fallow under three levels of applied nitrogen (0, 100 and 200 kg N/ha) at Narrabri, New South Wales. The cereals were sown on August 7, 1980 and growing season rainfall was supplemented by a single irrigation. Leaf area, total shoot dry matter production and ears per square metre were lower after cotton than after summer fallow, while grain yields of cereals sown immediately after cotton were 33% lower than those sown after fallow. Adding nitrogen increased leaf area, dry matter and grain yields of crops grown after cotton and fallow, but significant increases were not obtained with more than 100 kg/ha of applied nitrogen. Crops grown after cotton required an application of 100 kg N/ha for leaf and dry matter production at anthesis to equal that of crops grown after fallow with no additional nitrogen. The corresponding cost to grain yield of growing cotton was equivalent to 200 kg N/ha. The low grain yield responses measured in this experiment (1 8 and 10% increase to 100 kg N/ha after cotton and fallow, respectively) were attributed to the combined effects of late sowing, low levels of soil moisture and loss, by denitrification, of some of the applied nitrogen. The triticale, Satu, yielded significantly less than the two wheats (1 99 g/m2 for Satu c.f. 255 and 286 g/m2 for Songlen and WW 15, respectively), and did not appear to be a viable alternative to wheat in a cotton rotation.


2008 ◽  
Vol 8 ◽  
pp. 394-399 ◽  
Author(s):  
Osumanu H. Ahmed ◽  
Aminuddin Hussin ◽  
Husni M. H. Ahmad ◽  
Anuar A. Rahim ◽  
Nik Muhamad Abd. Majid

Ammonia loss significantly reduces the urea-N use efficiency in crop production. Efforts to reduce this problem are mostly laboratory oriented. This paper reports the effects of urea amended with triple superphosphate (TSP) and zeolite (Clinoptilolite) on soil pH, nitrate, exchangeable ammonium, dry matter production, N uptake, fresh cob production, and urea-N uptake efficiency in maize (Zea mays) cultivation on an acid soil in actual field conditions. Urea-amended TSP and zeolite treatments and urea only (urea without additives) did not have long-term effect on soil pH and accumulation of soil exchangeable ammonium and nitrate. Treatments with higher amounts of TSP and zeolite significantly increased the dry matter (stem and leaf) production of Swan (test crop). All the treatments had no significant effect on urea-N concentration in the leaf and stem of the test crop. In terms of urea-N uptake in the leaf and stem tissues of Swan, only the treatment with the highest amount of TSP and zeolite significantly increased urea-N uptake in the leaf of the test crop. Irrespective of treatment, fresh cob production was statistically not different. However, all the treatments with additives improved urea-N uptake efficiency compared to urea without additives or amendment. This suggests that urea amended with TSP and zeolite has a potential of reducing ammonia loss from surface-applied urea.


1987 ◽  
Vol 38 (1) ◽  
pp. 101 ◽  
Author(s):  
E Humphreys ◽  
WA Muirhead ◽  
FM Melhuish ◽  
RJG White

Urea (50 kg N ha-1) was applied at one of four times (before the first flush, before permanent flood, after permanent flood and at panicle initiation) to Calrose rice growing on an alkaline grey clay soil. Plant N uptake was highly correlated with dry matter production (r2=0.90) and with grain yield (r2 = 0.95). Efficiency of fertilisation and grain yield were highest when urea was applied either before permanent flood (56 kg grain (kg N) -1, 6.4 t ha-1) or at panicle initiation (47 kg grain (kg N)-1, 6.0 t ha-1), and these efficiencies are among the highest that have been recorded in rice. Significantly lower yields were obtained when the fertiliser was applied at sowing or after permanent flood, largely due to lower panicle densities. Fertilisation at sowing did not produce significantly more grain than the control, despite an early vegetative response. This is in contrast with previous findings on a more fertile acid red-brown earth, and suggests that soil properties may be an important consideration in predicting optimum fertilisation strategies.


2012 ◽  
Vol 58 (4) ◽  
pp. 121-130 ◽  
Author(s):  
Abha Mishra

Abstract The response of rice roots and shoots and their causal relationships affecting yield under varying soil water condition are important related subjects of research. To understand the mechanism of response, studies were conducted using four water treatments: a) intermittent flooding through the vegetative stage (IF-V); b) intermittent flooding extended into the reproductive stage (IF-R); c) no standing water (NSW), maintaining soil at field capacity; and d) continuous flooding (CF) condition at the Asian Institute of Technology in Thailand. It was observed that the senescence of lower leaf and flag leaf was delayed under IF-V compared to CF water condition. This delay was associated with higher root oxidizing activity (ROA) rate (50% higher than CF), higher root length density (RLD) (52% higher than CF), higher biomass production (14% higher than CF) along with higher grain yield (25% higher than CF). The plants grown under NSW conditions had better growth at later growth stage and better yield performance compared to IF-R because of higher nitrogen availability and higher uptake rate under NSW water conditions (73% higher N uptake). However, under CF water condition the nitrogen availability was not a limiting factor but due to decreased root activity rate the dry matter production and grain yield significantly reduced compared to IF-V water condition. The results suggested that ROA and RLD are linked to shoot response and to dry matter production. A better understanding of the underlying mechanisms should assist in achieving improvements in crop productivity through improved crop management practices in water-limiting environment.


1998 ◽  
Vol 49 (2) ◽  
pp. 179 ◽  
Author(s):  
A. K. Borrell ◽  
A. L. Garside ◽  
S. Fukai ◽  
D. J. Reid

Production of flooded direct-seeded rice (Oryza sativa L.) in semi-arid tropical regions of northern Australia would be enhanced by increasing the efficiency of fertiliser nitrogen (N) use. Short-statured and early-maturing genotypes have replaced the taller and later genotypes in northern Australia, and they may respond differently to N. This paper reports the results of 4 experiments comparing the response of 3 rice genotypes differing in maturity and stature to 5 rates of applied nitrogen (0, 70, 140, 210, and 280 kg/ha) over 4 seasons (2 wet and 2 dry seasons) in the Burdekin River Irrigation Area, northern Australia. Grain yield varied among seasons and was negatively correlated with average daily mean temperature during the 30-day period before anthesis. The response of yield to N fertilisation was generally higher in the dry season. Panicle number was correlated with grain yield in both seasons, yet responded to N fertilisation only in the dry season. In 3 of 4 experiments, grain yield responded to the application of up to 70 kg N/ha, yielding about 750 g/m2. In only 1 dry season experiment did grain yield respond to the application of 140 kg N/ha, yielding about 930 g/m2. In this experiment, the response of grain yield to N rate also varied among genotypes such that yield in the early-maturing genotypes (Newbonnet and Lemont) was more responsive to N rates above 70 kg/ha than in the late-maturing genotype (Starbonnet). Of the 3 genotypes examined, highest yields were attained in Newbonnet (early-maturing, medium-statured) by combining high total dry matter production with high harvest index, indicating that this plant type may have an advantage in northern Australia. Yields in Lemont (early-maturing, short-statured) and Starbonnet (late-maturing, tall-statured) were limited by dry matter production and harvest index, respectively. There is some evidence that increased dry matter production in Newbonnet compared with Lemont was related to increased stem length. The evidence linking high harvest index with increased earliness in Newbonnet compared with Starbonnet is less compelling.


2003 ◽  
Vol 83 (5) ◽  
pp. 483-495 ◽  
Author(s):  
B. L. Ma ◽  
J. Ying ◽  
L. M. Dwyer ◽  
E. G. Gregorich ◽  
M. J. Morrison

Relying less on fertilizer N and more on crop residual and biological N2 fixation by legume crops has been suggested as an effective way to meet the challenge of maximizing economic return while minimizing environmental pollution. A field study was conducted on a Brandon loam soil (Orthic Humic Gleysol) to determine the effects of crop rotation and N amendments on grain yield, crop growth, N uptake and use efficiency (NUE) of maize ( Zea mays L.) and fertilizer replacement values of legume. The rotations included maize in annual rotation with soybean [Glycine max (L.) Merrill], alfalfa ( Medicago sativa L.) or continuous maize. The soil N amendments included no amendment, NH4NO3 at 100 kg N ha-1, stockpiled or rotted dairy manure at 50 Mg ha-1 (wet weight). Averaged across 4 yr, increases in maize grain yield, total plant N uptake, and NUE ranged from 13 to 35% in the maize-soybean and maize-alfalfa rotations compared to continuous maize monoculture. During the study, total dry matter production was 15 to 35% higher and crop growth rate was 13 to 23% higher for maize following alfalfa than for continuous maize monoculture. The effect of legumes on the subsequent growth of maize (i.e., total dry matter production a n d crop growth rate) was most apparent during the grain filling period. Total maize dry matter production was similar up to silking stage for all three rotation systems; however, the difference in total dry matter between maize monoculture and maize in rotation with legume continued to increase after this stage so that the greatest differences were observed at physiological maturity. Grain yield was 19% higher in the 100 kg N ha-1 treatment and 23% higher in the repeated manure amendment than in the unfertilized treatment. Fertilizer N replacement values were on average, 68 kg ha-1 for soybean and 133 kg ha-1 for alfalfa. Our results indicate that maize in annual rotation with legume crops could increase the maize yields by as much as 20% and reduce the amount of chemical fertilizer N by as much as 180 kg N ha-1. The effect of legume preceding crop on maize dry matter production and N uptake is expressed mostly in the later stages of crop growth in this mid- to short-growing- season region. Key words: Rotation, Zea mays, dry matter accumulation, crop growth rate, manure, nitrogen use efficiency


2012 ◽  
Vol 60 (4) ◽  
pp. 385-396 ◽  
Author(s):  
E. Sugár ◽  
Z. Berzsenyi

The effect of four rates of nitrogen (N) fertilisation (0, 80, 160, 240 kg ha−1) on the growth and yield components of three winter wheat varieties with different maturity dates (Mv Toborzó — extra early, Mv Palotás — early, Mv Verbunkos — mid-early) was analysed in a long-term experiment laid out in a two-factorial split-plot design with four replications in the years 2007–2009. The dry matter production of the whole plant and of individual plant organs, the maximum leaf area, the area of the flag-leaf and all the yield components except the thousand-kernel weight were significantly the greatest in the N160 or the N240 treatments. Averaged over the varieties and years the grain yield in the N treatments was N0: 5.5, N80: 7.1, N160: 7.3 and N240: 7.5 t ha−1. Averaged over N treatments and years the variety Mv Verbunkos had the highest dry matter production, stem mass, spike mass, number of grains per spike and grain yield. Mv Verbunkos had the greatest leaf area in the favourable years of 2008 and 2009 and the greatest flag-leaf area in 2008. Averaged over N treatments and varieties the dry matter production per plant, the leaf and stem mass, the number of spikes per square metre and the thousand-kernel weight were greatest in 2007. The spike mass was lowest in 2007 and had higher, very similar values in 2008 and 2009. The maximum leaf area per plant, the area of the flag-leaf, the number of grains per spike and the grain yield were highest in 2008. The values and dynamics of the growth parameters gave a good characterisation of the effect of the treatments (N fertilisation, variety, year) on plant production (yield, yield components) in various stages of growth.


Sign in / Sign up

Export Citation Format

Share Document