PETROLEUM PROCESSING PLANTS—TECHNICAL SURVEILLANCE PROGRAM

2003 ◽  
Vol 43 (1) ◽  
pp. 787
Author(s):  
J.M. Gibbeson

On behalf of itself and BHP-B, Esso operates offshore production platforms in Bass Strait, a crude stabilisation and gas processing plant at Longford and a LPG fractionation plant at Long Island Point, Victoria. The Technical Surveillance Program for these facilities is implemented at both the Operator and Engineering levels. The program has been enhanced by building on existing DCS process control and process information (PI) systems and through development of a more structured engineering monitoring system. The enhanced program continues to register tangible benefits in integrity, product quality, recovery, efficiency and reliability and capacity.At the operator level, the process is monitored continuously, assisted by process alarms to maintain the plant within the normal desirable operating zone. Safe operating limits define the outside boundary of the safe operating envelope which is secured with shutdown and other automatic protective devices. Alarm and limit conditions associated with these parameters have been incorporated into the DCS control system with pre-defined operator responses appearing automatically on the screen if the condition is reached.At the engineering level, the surveillance program is a systematic periodic monitoring process focussing on optimum performance and continuous improvement. It is structured using the elements of a management system. Within this framework, engineering spreadsheets have been developed with direct links to process data via process information system software. The spreadsheets assist plant engineers to efficiently monitor the key performance variables; they also pre-define the acceptable operating range, calculate statistical performance, highlight deviations and hyperlink back to the PI system for more detailed troubleshooting. Day-today deviations and performance improvements are fed back and reviewed at the working level, more significant issues are formally investigated and reviewed with management. Key data and overall performance is summarised monthly, and formally reviewed by plant and engineering management.

MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 49-54 ◽  
Author(s):  
E. Todd Ryan ◽  
Andrew J. McKerrow ◽  
Jihperng Leu ◽  
Paul S. Ho

Continuing improvement in device density and performance has significantly affected the dimensions and complexity of the wiring structure for on-chip interconnects. These enhancements have led to a reduction in the wiring pitch and an increase in the number of wiring levels to fulfill demands for density and performance improvements. As device dimensions shrink to less than 0.25 μm, the propagation delay, crosstalk noise, and power dissipation due to resistance-capacitance (RC) coupling become significant. Accordingly the interconnect delay now constitutes a major fraction of the total delay limiting the overall chip performance. Equally important is the processing complexity due to an increase in the number of wiring levels. This inevitably drives cost up by lowering the manufacturing yield due to an increase in defects and processing complexity.To address these problems, new materials for use as metal lines and interlayer dielectrics (ILDs) and alternative architectures have surfaced to replace the current Al(Cu)/SiO2 interconnect technology. These alternative architectures will require the introduction of low-dielectric-constant k materials as the interlayer dielectrics and/or low-resistivity conductors such as copper. The electrical and thermomechanical properties of SiO2 are ideal for ILD applications, and a change to material with different properties has important process-integration implications. To facilitate the choice of an alternative ILD, it is necessary to establish general criterion for evaluating thin-film properties of candidate low-k materials, which can be later correlated with process-integration problems.


Author(s):  
Xiaomo Jiang ◽  
Craig Foster

Gas turbine simple or combined cycle plants are built and operated with higher availability, reliability, and performance in order to provide the customer with sufficient operating revenues and reduced fuel costs meanwhile enhancing customer dispatch competitiveness. A tremendous amount of operational data is usually collected from the everyday operation of a power plant. It has become an increasingly important but challenging issue about how to turn this data into knowledge and further solutions via developing advanced state-of-the-art analytics. This paper presents an integrated system and methodology to pursue this purpose by automating multi-level, multi-paradigm, multi-facet performance monitoring and anomaly detection for heavy duty gas turbines. The system provides an intelligent platform to drive site-specific performance improvements, mitigate outage risk, rationalize operational pattern, and enhance maintenance schedule and service offerings via taking appropriate proactive actions. In addition, the paper also presents the components in the system, including data sensing, hardware, and operational anomaly detection, expertise proactive act of company, site specific degradation assessment, and water wash effectiveness monitoring and analytics. As demonstrated in two examples, this remote performance monitoring aims to improve equipment efficiency by converting data into knowledge and solutions in order to drive value for customers including lowering operating fuel cost and increasing customer power sales and life cycle value.


AIHA Journal ◽  
2003 ◽  
Vol 64 (5) ◽  
pp. 660-667 ◽  
Author(s):  
Katharyn A. Grant ◽  
John G. Garland ◽  
Todd C. Joachim ◽  
Andrew Wallen ◽  
Twyla Vital

2006 ◽  
Vol 69 (2) ◽  
pp. 299-307 ◽  
Author(s):  
C. VanWORTH ◽  
B. A. McCREA ◽  
K. H. TONOOKA ◽  
C. L. BOGGS ◽  
J. S. SCHRADER

PCR–restriction fragment length polymorphism of the flagellin (flaA) gene in Campylobacter jejuni was used to determine the relationships of isolates collected at the farm and throughout processing for six niche-market poultry species. This study focused on two specialty chicken products, poussin and free range, and four other specialty products, squab, duck, guinea fowl, and quail. Cloacal and carcass samples were collected from three flocks from each of the six niche species. Three processing plants in California participated in a 2-year investigation. A total of 773 isolates from farm, posttransport, and the processing plants were genotyped, yielding a total of 72 distinct flaA profiles for the six commodities. Genetic diversity of C. jejuni at the farm was greatest for ducks with up to 12 distinct flaA types in two flocks and least for squab 1 flaA type between two farms. For two of the guinea fowl flocks, one free-range flock, two squab flocks, and all three poussin flocks, the flaA types recovered at the prepackage station matched those from the farm. Cross-contamination of poultry carcasses was supported by the observation of flaA types during processing that were not present at the farm level. New C. jejuni strains were detected after transport in ducks, guinea fowl, and free-range chickens. Postpicker, postevisceration, and prewash sampling points in the processing plant yield novel isolates. Duck and free-range chickens were the only species for which strains recovered within the processing plant were also found on the final product. Isolates recovered from squab had 56 to 93% similarity based on the flaA types defined by PCR–restriction fragment length polymorphism profiles. The 26 duck isolates had genetic similarities that ranged from 20 to 90%. Guinea fowl and free-range chickens each had 40 to 65% similarity between isolates. Poussin isolates were 33 to 55% similar to each other, and quail isolates were 46 to 100% similar. Our results continue to emphasize the need to clean processing equipment and posttransport crates in order to decrease cross contamination between flocks. This study also determined that several strains of C. jejuni had unique flaA types that could only be recovered in their host species.


2021 ◽  
Vol 30 (5) ◽  
pp. 58-65
Author(s):  
A. Yu. Shebeko ◽  
Yu. N. Shebeko ◽  
A. V. Zuban

Introduction. GOST R 12.3.047-2012 standard offers a methodology for determination of required fire resistance limits of engineering structures. This methodology is based on a comparison of values of the fire resistance limit and the equivalent fire duration. However, in practice incidents occur when, in absence of regulatory fire resistance requirements, a facility owner, who has relaxed the fire resistance requirements prescribed by GOST R 12.3.047–2012, is ready to accept its potential loss in fire for economic reasons. In this case, one can apply the probability of safe evacuation and rescue to compare distributions of fire resistance limits, on the one hand, and evacuation and rescue time, on the other hand.A methodology for the identification of required fire resistance limits. The probabilistic method for the identification of required fire resistance limits, published in work [1], was tested in this study. This method differs from the one specified in GOST R 12.3.047-2012. The method is based on a comparison of distributions of such random values, as the estimated time of evacuation or rescue in case of fire at a production facility and fire resistance limits for engineering structures.Calculations of required fire resistance limits. This article presents a case of application of the proposed method to the rescue of people using the results of full-scale experiments, involving a real pipe rack at a gas processing plant [2].Conclusions. The required fire resistance limits for pipe rack structures of a gas processing plant were identified. The calculations took account of the time needed to evacuate and rescue the personnel, as well as the pre-set reliability of structures, given that the personnel evacuation and rescue time in case of fire is identified in an experiment.


Author(s):  
K. Boddenberg ◽  
B. Kock ◽  
M. Dorfman ◽  
L. Russo ◽  
M. Nestler

Abstract Air separation plants use centrifugal compressors where air and electrical energy are the only raw materials used in the production process. So energy costs play a crucial role and the compressors are heavily penalized when guaranteed performance levels are not achieved. In order to better generate performance, abradable coatings, previously used in the gas turbine industry, have been designed into turbocompressors. This paper will show the optimization and performance improvements of a new aluminium silicon-boron nitride material.


2007 ◽  
Vol 70 (10) ◽  
pp. 2354-2364 ◽  
Author(s):  
JASON R. HUCK ◽  
NICOLE H. WOODCOCK ◽  
ROBERT D. RALYEA ◽  
KATHRYN J. BOOR

Psychrotolerant endospore-forming bacteria Bacillus and Paenibacillus spp. are important spoilage organisms in fluid milk. A recently developed rpoB subtyping method was applied to characterize the diversity and phylogenetic relationships among Bacillus and related sporeformers associated with milk processing systems. Milk samples representing the processing continuum from raw milk to pasteurized products were collected from two fluid milk processing plants, held at 6°C uptothe code date that had been established by each processing plant (i.e., either 18 or 21 days), and plated for bacterial enumeration throughout storage. Bacterial colonies selected to represent the visible diversity in colony morphology on enumeration plates were examined further. Among 385 bacterial isolates characterized, 35% were Bacillus spp., and 65% were Paenibacillus spp. A total of 92 rpoB allelic types were identified among these isolates, indicating considerable diversity among endospore-forming spoilage organisms present in fluid milk systems. Of the 92 allelic types identified, 19 were isolated from samples collected from both processing plants. The same rpoB allelic types were frequently identified in paired raw milk and packaged product samples, indicating that Bacillus and Paenibacillus spp. can enter dairy processing systems through raw milk. Certain subtypes were found exclusively in pasteurized samples, including those that were temporally independent, suggesting the possibility of in-plant sources for these spoilage organisms, including through the persistence of selected subtypes in processing plants. Development of effective control strategies for the diverse array of psychrotolerant endospore-forming organisms that currently limit the shelf lives of high-temperature short-time fluid milk products will require comprehensive, integrated efforts along the entire milk processing continuum.


Sign in / Sign up

Export Citation Format

Share Document