PESA 2010 production and development review

2011 ◽  
Vol 51 (1) ◽  
pp. 167
Author(s):  
Tamara Sebire

2010 was another busy year for Australian hydrocarbon production and development. Natural gas production was the standout performer with both domestic gas and LNG production increasing by about 5% compared to 2009. Domestic gas output was strong with significant growth in production from the Gippsland Basin, coal seam methane in the Surat-Bowen Basin, and the start-up of the Blacktip gas project in WA. Domestic gas output is set to reach record levels again next year and has strong growth prospects in the future with final investment decisions being taken on coal seam gas projects in Queensland and the Macedon project in WA. Australian LNG production increased 4.5% in 2010 accounting for 34% of Australian hydrocarbon production. LNG production will grow further in 2011 with first gas expected from Pluto LNG project during the year. Oil production was steady in 2010; however, it is set to increase in 2011 with a full year of production from the Van Gogh and Pyrenees projects. Production levels only tell part of the Australian hydrocarbon story. In addition to the proposed domestic gas and oil projects, the combined value of committed and potential LNG projects in Australia has surpassed $100 billion. A highlight of 2010 was the final investment decision on the A$15 bn Queensland Curtis LNG Project (QCLNG). The first phase of QCLNG will consist of two LNG trains with a combined capacity of 8.5 million tonnes per annum, with first LNG exports expected in 2014. QCLNG is the first of many proposed coal seam gas to LNG (CSG-LNG) developments in Queensland. Other CSG-LNG projects reached significant milestones this year. Of particular note is the federal environmental approval of Gladstone LNG and state environmental approval of Australia Pacific LNG. In WA, the Browse LNG project complied with all Browse Basin retention lease conditions and remains on track for a targeted final investment decision in 2012. Other major LNG projects including Ichthys and Wheatstone also continue to make positive progress towards a final investment decision in the next 24 months. Sunrise, Prelude and Bonaparte LNG set a technology milestone in the industry with all three selecting floating LNG (FLNG) as their preferred development concept. 2010 has also seen the emergence of further new technologies in the form of small scale LNG projects for resources previously considered un-commercial. This has opened the door for South Australia and New South Wales to enter the LNG export market in the future. The Australian hydrocarbon industry continues to grow and its global importance, particularly in LNG, reflected by the increasing number of foreign companies entering Australia. In 2010, Shell and PetroChina increased their involvement in the Australian industry purchasing Arrow Energy for A$3.5 bn. CNOOC has increased its involvement in a number of areas, including purchasing a 5–10% stake in QCLNG and investment in CSM exploration through Exoma Energy. GDF Suez and Total have reinvigorated their interests in offshore WA and Petrobras made their first entry into Australia acquiring an interest in exploration acreage offshore WA. 2010 was an active year for Australian hydrocarbon production and development–continued success depends on the successful execution of committed and proposed projects. Escalation of development costs and a looming skills shortage remain the largest risks to the Australian hydrocarbon industry as multiple projects attempt to move forward simultaneously.

2010 ◽  
Vol 50 (2) ◽  
pp. 686
Author(s):  
Cristian Purtill

The Queensland Government has developed an associated water management policy that, among other things, strives to maximise the beneficial use of associated water derived from Queensland’s burgeoning coal seam gas industry. The Department of Infrastructure and Planning reports that domestic gas production alone (i.e. without an export LNG market) will produce on average 25 GL per annum in the next 25 years. Most of this water has sufficiently high total dissolved solids and other water quality issues to require some form of treatment prior to use. Clearly, the relatively large volumes of water present both challenges and opportunities to the communities in which the CSG industry is developing. In line with the philosophy of beneficial use of associated water, Santos has developed a portfolio of options within its associated water management strategy and plans for its Arcadia Valley, Fairview and Roma tenements. The strategy seeks to: provide enduring value for the community; maximise benefits while minimising the environmental footprint; provide a range of alternatives to avoid single-mode failure; use scalable options in response to uncertainty; deploy demonstrated technologies; and, meet and exceed all regulatory requirements. This paper will set some context around the broader CSG industry’s associated water challenges, and identify what parameters must be considered in arriving at beneficial uses for the water. The paper then explores some of Santos’ approaches to associated water management.


2010 ◽  
Vol 50 (1) ◽  
pp. 143
Author(s):  
Sue Slater

This paper provides a brief update on some of the key environmental issues that arose during 2009. In Queensland, activity is dominated by coal seam gas projects and specifically coal seam gas (CSG) to liquefied natural gas (LNG) projects. Environmental milestones for these projects are discussed, and the State Government’s response policy and regulation development response is reviewed. The progress of the more conventional LNG projects in Western Australia and the Northern Territory is also discussed. The final report on the mandated ten year review of the Environment Protection and Biodiversity Conservation Act 1999 was released in December 2009. Seventy-one recommendations were made, and some key recommendations related to our industry are discussed here. Climate change has again dominated the media, with the United Nations Climate Change Conference held in Copenhagen in December 2009. In Queensland, the Government released a paper that presented a range of strategies and policies, building on a number of existing schemes and introducing new measures. Gas is identified as a key transitional fuel while low emission coal technology and emerging renewable energy sources are being developed. Greenhouse gas legislation is continuing to be developed across several states, but subordinate legislation is yet to be finalised. In Victoria, submissions on the Greenhouse Gas Geological Sequestration Regulations closed in October 2009, and the Greenhouse Gas Geological Sequestration Act 2008 came into effect on 1 December 2009. In March 2009, ten offshore acreage releases were made under the Commonwealth legislation; however, the closing date for submissions is dependent upon the development of the regulations. South Australia passed an Act amending the Petroleum and Geothermal Act 2000 on 1 October 2009 to allow geosequestration. A number of reviews of the regulatory framework or the administrative systems associated with the upstream oil and gas sector have been completed in the last decade. All these reviews make similar findings and recommendations, and most recently the Jones Report, tabled in Western Australian Parliament on 12 August 2009, found that most key recommendations from previous reports and reviews had not been addressed or properly implemented. There seems to be little point in undertaking regulatory and system reviews that consistently make similar findings, if these findings are never addressed. The hurdles to implementation of key recommendations need to be identified, so that progress can be made in improving the approvals processes for the industry, and improving the environmental outcomes.


2016 ◽  
Vol 56 (2) ◽  
pp. 545
Author(s):  
David Post ◽  
Peter Baker ◽  
Damian Barrett

Many Australians, particularly in rural areas, are seeking clear scientific information about the potential impacts of coal seam gas production on groundwater and surface water across the country. In response to the resultant community concern, the Australian Government commissioned an ambitious multi-disciplinary program of bioregional assessments to improve understanding of the potential impacts of coal seam gas (and large coal mining) activities on water-dependent assets across six bioregions in eastern and central Australia. Delivered through a collaboration between the Department of the Environment, the Bureau of Meteorology, CSIRO, and Geoscience Australia—and including close engagement with natural resource management and catchment management organisations, coal resource companies, Indigenous peoples and state governments—the results will allow coal resource companies, governments, and the community to focus on the areas where impacts may occur so that these can be minimised. Key findings of the program will be presented with specific reference to the potential impacts on water-dependent assets due to CSG development by Metgasco and AGL in the Clarence-Moreton and Gloucester regions, respectively.


Energy ◽  
2015 ◽  
Vol 88 ◽  
pp. 621-635 ◽  
Author(s):  
Steven Psaltis ◽  
Troy Farrell ◽  
Kevin Burrage ◽  
Pamela Burrage ◽  
Peter McCabe ◽  
...  

Author(s):  
V. T. Trofimov ◽  
A. V. Nikolaev ◽  
A. D. Zhigalin ◽  
T. A. Baraboshkina ◽  
M. A. Kharkina ◽  
...  

Oil and gas industry shows the danger of this kind of industry, including from the environmental point of view. Entering the waters of marginal seas and ocean significantly aggravated the situation, moving a significant part of the emergency situations related to hydrocarbon production, the level of regional and global. The use of new technologies in the production of shale hydrocarbons added new problems - the total probability of contamination of large amounts of geological space highly toxic chemicals. Tracking down of a new perspective mineral energy source - gas hydrates - allows to plan only while possible passing dangers, but shows, that the ecological risk can many times more. For opposition to threat of occurrence of emergencies in connection with growth of extraction of hydrocarbons expediently creation at a national level of special structures of the control and fast reaction. Such structures can be if necessary opened for the international cooperation, and are entered into jurisdiction of the United Nations Organization.


2010 ◽  
Vol 50 (2) ◽  
pp. 718 ◽  
Author(s):  
Georg Zangl ◽  
Shripad Biniwale ◽  
Andreas Al-Kinani ◽  
Vikram Sharma ◽  
Rajesh Trivedi

This paper discusses a new workflow to stochastically estimate the performance of future production in coal seam gas (CSG) developments. Usually performance evaluations for CSG wells are conducted using either much-generalised statistical methods or numerical simulation. Both approaches have significant drawbacks; the former methods are quick but very often lack accuracy, while the latter is very accurate however also usually highly complex in set-up and computation. The presented workflow is a new approach to well performance prediction that combines speed and reasonable accuracy. The workflow generates a set of key performance indicators of existing wells derived from historic dynamic data (water and gas production rates, pressures, etc.), static data (initial coal and reservoir properties, etc.) and predicted data (simplified production forecasts). The wells are then grouped according to the similarity of their KPIs. The production profiles of the wells within the same group are combined to a type curve that is described by the most likely production profile and an associated uncertainty range. A data-driven expert system is used to identify and capture the correlations of the parameters such as geographic locations, well spacing, reservoir properties and the group membership (equivalent to type curve). This expert system can then be applied to any location in the field in order to determine the most likely group membership of a potential well. The classification of a new well to a group is hereby not necessarily unique; the expert system might classify a new well into several groups and assign a probability of occurrence for each of the groups. A Monte Carlo routine is then applied to forecast the performance of the new well locations honoring the respective probability of occurrence of each type curve.


2010 ◽  
Vol 50 (1) ◽  
pp. 121
Author(s):  
Geoff Humphreys

Australian hydrocarbon production reached record levels in 2009 due to strong growth in production of LNG from the North West Shelf Venture. Domestic gas production also reached record levels. Coal seam gas production continued to grow, with the continuing development of existing fields and the development of the Kenya and Talinga projects in Queensland. Two new conventional gas projects also came into production: Blacktip in the Timor Sea and Longtom in the Gippsland Basin. However oil production was below that in the previous year, reflecting natural field decline and the absence of large scale projects reaching production. The project sanction highlight of the year was the final investment decision on the $43 billion Gorgon LNG project. This project will comprise three LNG trains with total capacity of 15 million tonnes per annum plus a domestic gas plant. The first gas from this project is planned for 2014. Eight other potential LNG projects are in various stages of front end engineering and design, most targeting final investment decisions in 2010 or 2011. The pipeline of committed and potential LNG projects has a combined value estimated to be well over $100 billion. These projects have the potential to significantly increase Australian LNG production over the next five to ten years. In the near term the start-up of the Van Gogh, Pyrenees and Turrum oil projects are expected to provide some respite from the decline in Australian oil production. Cost estimates for new projects are again escalating and skills shortages in all parts of the project delivery chain threaten the ability to deliver all of the projects under consideration.


Sign in / Sign up

Export Citation Format

Share Document