Designing the world's largest semi-submersible central processing facility

2012 ◽  
Vol 52 (2) ◽  
pp. 685
Author(s):  
Claude Cahuzac

What are the key design considerations driving the successful delivery of the world’s largest semi-submersible Central Processing Facility (CPF), to be installed at the Ichthys gas field in the Browse Basin, 200 km offshore North West Australia? Extreme cyclonic weather conditions, separating condensate from the gas stream, accommodating 150 personnel, and the sheer size of the gas processing unit at 110,000 tonnes, have created unprecedented challenges for the Ichthys design team. This extended abstract explores the design and planned construction of this massive piece of equipment. The CPF, measuring 110 m x 110 m, will be anchored to the seabed in about 250 m of water using 28 mooring chains. During the 40-year life of the project, the unit will collect gas from a network of up to 50 subsea production wells drilled into reservoirs 4,000–4,500 m beneath the seabed. From the CPF, condensate will be sent to a Floating Production Storage Offtake (FPSO) vessel moored nearby. The gas will be compressed and sent by an 885-km subsea pipeline to Darwin for processing into LNG, LPG and residual condensate. INPEX with its Ichthys joint venturer, Total, will be shipping 8.4 million tonnes of LNG and 1.6 million tonnes of LPG a year, as well as 100,000 barrels of condensate a day at peak. Successful delivery of the Ichthys Project will ensure INPEX achieves its goal of becoming the operator of a major LNG facility, while helping reach its target of producing 800,000 boe/d by 2020.


2021 ◽  
Author(s):  
Kaase Gbakon

Abstract The newly passed Finance Act 2020 (FA2020) in Nigeria is reviewed especially as it relates to the oil and gas industry. The review is partly executed by modeling the specific provisions of the Act that impact gas utilization projects. The effect of the provisions on investor returns as well as the extent to which government objectives are met is ascertained – the government objectives being to prevent tax leakage via excessive financing costs, as well as encourage gas development and utilization. A qualitative assessment of the FA2020 is first conducted to examine its provisions applicable to the oil and gas sector. Furthermore, a spreadsheet Discounted Cash Flow (DCF) economic model of a gas central processing facility is built. A hypothetical $800Million (CapEx), 300mmscfd gas processing facility, which is 70% debt financed is modeled by incorporating the provisions of the FA2020. The metrics of the project (both investor and government) are then compared under the scenarios of with and without the FA2020. Key results indicate that the economic returns to investor in the gas processing facility are still largely preserved at a healthy level, even as government take improves by $102Million due to the FA2020. Specifically, without the FA2020, investor returns an IRR of 21.11% while due to the FA2020, investor IRR declines to 19.79%. Sensitivity analysis serves to illustrate one of the aims of the FA2020, which is to prevent tax loss from high cost of financing. Lengthening the tenor of loans reduces the fraction of the financing costs that is tax deductible. The modeling result shows that, ceteris paribus, for one (1) year increase in loan tenor, the amount of financing cost that is tax deductible reduces by 5%. Another important outcome is that for every $1 of government receipts preserved/enhanced by the FA, the investor NPV declines by 38cents This impact assessment of the FA2020 on gas utilization projects is conducted against the backdrop of several government pronouncements and policy positions to encourage domestic gas development. Financing plays an important role in delivering gas projects, consequently the evaluation of the impact of the FA2020 becomes imperative. This is to allow an examination of the effect of the Act on the ability to meet the strategic objective of powering the economy via gas while fulfilling Nigeria’s climate change commitments by deeper adoption of gas as a transition fuel.



2005 ◽  
Vol 45 (1) ◽  
pp. 13
Author(s):  
A.J. McDiarmid ◽  
P.T. Bingaman ◽  
S.T. Bingham ◽  
B. Kirk-Burnnand ◽  
D.P. Gilbert ◽  
...  

The John Brookes gas field was discovered by the drilling of John Brookes–1 in October 1998 and appraisal drilling was completed in 2003. The field is located about 40 km northwest of Barrow Island on the North West Shelf, offshore West Australia. The John Brookes structure is a large (>90 km2) anticline with >100 m closure mapped at the base of the regional seal. Recoverable sales gas in the John Brookes reservoir is about 1 Tcf.Joint venture approval to fast track the development was gained in January 2004 with a target of first gas production in June 2005. The short development time frame required parallel workflows and use of a flexible/low cost development approach proven by Apache in the area.The John Brookes development is sized for off-take rates up to 240 TJ/d of sales gas with the development costing A$229 million. The initial development will consist of three production wells tied into an unmanned, minimal facility wellhead platform. The platform will be connected to the existing East Spar gas processing facilities on Varanus Island by an 18-inch multi-phase trunkline. Increasing the output of the existing East Spar facility and installation of a new gas sweetening facility are required. From Varanus Island, the gas will be exported to the mainland by existing sales gas pipelines. Condensate will be exported from Varanus Island by tanker.



Author(s):  
Sudra Irawan ◽  
Muhammad Zainuddin Lubis

North West Java Basin is a tertiary sedimentary basin which is located in the right of the western part of the Java island. North West Java Basin is geodynamic where currently located at the rear position of the path of the volcanic arc of Java that is the result of the India-Australia plate subduction to the south towards the Eurasian plate (Explanation of Sunda) in the north. Geology structure observation is difficult to be conducted at Quaternary volcanicfield due to the classical problem at tropical region. In the study interpretation of fault structures can be done on a cross-section of Pre-Stack Depth Migration (PSDM) used prayer namely Hardware Key Device, ie Central Processing Unit: RedHat Enterprise Linux AS 5.0, prayer Monitor 24-inch pieces, Server: SGI altix 450/SuSe Linux Enterprise Server 9.0, 32 GB, 32 X 2,6 GHz Procesor, network: Gigabyte 1 Gb/s, and the software used is paradigm, product: Seismic Processing and Imaging. The third fault obtained in this study in accordance with the geological information derived from previous research conducted by geologists. The second general direction is northwest-southeast direction represented by Baribis fault, fault-fault in the Valley Cimandiri and Gunung Walat. This direction is often known as the directions Meratus (Meratus Trend). Meratus directions interpreted as directions that follow the pattern of continuous arc Cretaceous age to Meratus in Kalimantan.



2021 ◽  
Author(s):  
Marc Lehmann ◽  
Steven Brunt ◽  
John Wyper ◽  
Barry Jewson ◽  
Gaganjot Lamba ◽  
...  

Abstract The Ichthys Field is located approximately 220 km north-west of the coast of mainland Western Australia and 820 km south-west of Darwin. Gas from the Ichthys Field undergoes processing on an offshore central processing facility (CPF) to dehydrate the gas and remove a Rich MEG phase and condensate. The dry gas is compressed and sent to Darwin via a gas export pipeline while the condensate and MEG are pumped to an interlinked floating production, storage, and offtake facility (FPSO) with hydrocarbon processing capabilities. The FPSO also features the world's largest offshore MEG regeneration system. An integrated chemical supply chain has been developed to deliver bulk chemicals from the vendor chemical supply base in Darwin to the offshore facilities. Delivery is facilitated by specially designed platform supply vessels (PSV) that carry bulk chemicals in dedicated storage tanks and transferred to the offshore facilities using bulk transfer hoses. This paper details aspects of the chemical supply chain and describes best practices that have been developed to manage the safe delivery of bulk chemicals from the chemical supplier to the operator.



2020 ◽  
Author(s):  
Roudati jannah

Perangkat keras komputer adalah bagian dari sistem komputer sebagai perangkat yang dapat diraba, dilihat secara fisik, dan bertindak untuk menjalankan instruksi dari perangkat lunak (software). Perangkat keras komputer juga disebut dengan hardware. Hardware berperan secara menyeluruh terhadap kinerja suatu sistem komputer. Prinsipnya sistem komputer selalu memiliki perangkat keras masukan (input/input device system) – perangkat keras premprosesan (processing/central processing unit) – perangkat keras luaran (output/output device system) – perangkat tambahan yang sifatnya opsional (peripheral) dan tempat penyimpanan data (storage device system/external memory).



2020 ◽  
Author(s):  
Ika Milia wahyunu Siregar

Perkembangan IT di dunia sangat pesat, mulai dari perkembangan sofware hingga hardware. Teknologi sekarang telah mendominasi sebagian besar di permukaan bumi ini. Karena semakin cepatnya perkembangan Teknologi, kita sebagai pengguna bisa ketinggalan informasi mengenai teknologi baru apabila kita tidak up to date dalam pengetahuan teknologi ini. Hal itu dapat membuat kita mudah tergiur dan tertipu dengan berbagai iklan teknologi tanpa memikirkan sisi negatifnya. Sebagai pengguna dari komputer, kita sebaiknya tahu seputar mengenai komponen-komponen komputer. Komputer adalah serangkaian mesin elektronik yang terdiri dari jutaan komponen yang dapat saling bekerja sama, serta membentuk sebuah sistem kerja yang rapi dan teliti. Sistem ini kemudian digunakan untuk dapat melaksanakan pekerjaan secara otomatis, berdasarkan instruksi (program) yang diberikan kepadanya. Istilah Hardware komputer atau perangkat keras komputer, merupakan benda yang secara fisik dapat dipegang, dipindahkan dan dilihat. Central Processing System/ Central Processing Unit (CPU) adalah salah satu jenis perangkat keras yang berfungsi sebagai tempat untuk pengolahan data atau juga dapat dikatakan sebagai otak dari segala aktivitas pengolahan seperti penghitungan, pengurutan, pencarian, penulisan, pembacaan dan sebagainya.



2020 ◽  
Author(s):  
Intan khadijah simatupang

Komputer adalah serangkaian mesin elektronik yang terdiri dari jutaan komponen yang dapat saling bekerja sama, serta membentuk sebuah sistem kerja yang rapi dan teliti. Sistem ini kemudian digunakan untuk dapat melaksanakan pekerjaan secara otomatis, berdasarkan instruksi (program) yang diberikan kepadanya. Istilah Hardware computer atau perangkat keras komputer, merupakan benda yang secara fisik dapat dipegang, dipindahkan dan dilihat. Software komputer atau perangkat lunak komputer merupakan kumpulan instruksi (program/prosedur) untuk dapat melaksanakan pekerjaan secara otomatis dengan cara mengolah atau memproses kumpulan instruksi (data) yang diberikan. Pada prinsipnya sistem komputer selalu memiliki perangkat keras masukan (input/input device system) – perangkat keras pemprosesan (processing/ central processing unit) – perangkat keras keluaran (output/output device system), perangkat tambahan yang sifatnya opsional (peripheral) dan tempat penyimpanan data (Storage device system/external memory).



2020 ◽  
Author(s):  
Siti Kumala Dewi

Perangkat keras komputer adalah bagian dari sistem komputer sebagai perangkat yang dapat diraba, dilihat secara fisik, dan bertindak untuk menjalankan instruksi dari perangkat lunak (software). Perangkat keras komputer juga disebut dengan hardware. Hardware berperan secara menyeluruh terhadap kinerja suatu sistem komputer. Berdasarkan fungsinya, perangkat keras terbagi menjadi :1.Sistem Perangkat Keras Masukan (Input Device System )2.Sistem Pemrosesan ( Central Processing System/ Central Processing Unit(CPU)3.Sistem Perangkat Keras Keluaran ( Output Device System )4.Sistem Perangkat Keras Tambahan (Peripheral/Accessories Device System)



2008 ◽  
Vol 59 (7) ◽  
Author(s):  
Sanda Florentina Mihalache

A modelling approach that will facilitate an in-depth understanding of the interactions of the different phenomena, human interactions and environmental factors constituting �real world� industrial processes is presented. An important industrial system such as Gas Processing Unit (GPU) have inter-related internal process activities coexisting with external events and requires a real time inter-disciplinary approach to model them. This modeling framework is based on identifying as modules, the part of processes that have interactions and can be considered active participants in overall behaviour. The selected initial set of modules are structured as Petri net models and made to interact iteratively to provide process states of the system. The modeling goal is accomplished by identifying the evolution of the process states as a means of effective representation of the �actual running�� of the industrial process. The paper discusses the function and the implementation of the modelling method as applicable to the industrial case of GPU.



Sign in / Sign up

Export Citation Format

Share Document