Geochemical underpinnings of Australia's offshore hydrocarbon prospectivity

2014 ◽  
Vol 54 (1) ◽  
pp. 415
Author(s):  
Marita Bradshaw ◽  
Dianne Edwards ◽  
Chris Boreham ◽  
Emmanuelle Grosjean ◽  
Jennifer Totterdell ◽  
...  

Molecular and isotopic analyses of oils and gases can provide information on the depositional environment, maturation and age of their source rocks, and the post expulsion history of the hydrocarbons generated. Source rock analyses can determine their potential to generate hydrocarbons of varying type over specific thermal ranges, as well as demonstrating the strength of oil- or gas-to-source correlations. Together, this geochemical interpretation can provide insights about the extent of petroleum systems and can help delineate the relationships between hydrocarbon occurrences in a basin and across the continent. Oils that do not fit the well-established framework of oil families and Australian petroleum systems point to new source rock fairways. Examples include vagrant oils with lacustrine affinities found at various locations on the western Australian margin. Other examples are oil occurrences in the Gippsland Basin whose geochemical signatures contrast with the dominant non-marine oils, supporting the existence of a viable marine source rock facies. In under-explored and frontier basins, geochemical analyses of potential source rocks can provide key evidence to underpin new exploration efforts. For example, the recent acreage uptake in the Bight Basin was supported by Geoscience Australia’s recovery and analysis of oil-prone marine source rocks, and in the northern Perth Basin by new geochemical analysis extending the distribution of Lower Triassic Hovea marine source rocks offshore. Geoscience Australia has now embarked on a regional petroleum geological program that includes a national source rock study aimed at identifying and characterising Australia’s hydrocarbon sources, families and systems.

2021 ◽  
Author(s):  
Jennifer Spalding ◽  
Jeremy Powell ◽  
David Schneider ◽  
Karen Fallas

<p>Resolving the thermal history of sedimentary basins through geological time is essential when evaluating the maturity of source rocks within petroleum systems. Traditional methods used to estimate maximum burial temperatures in prospective sedimentary basin such as and vitrinite reflectance (%Ro) are unable to constrain the timing and duration of thermal events. In comparison, low-temperature thermochronology methods, such as apatite fission track thermochronology (AFT), can resolve detailed thermal histories within a temperature range corresponding to oil and gas generation. In the Peel Plateau of the Northwest Territories, Canada, Phanerozoic sedimentary strata exhibit oil-stained outcrops, gas seeps, and bitumen occurrences. Presently, the timing of hydrocarbon maturation events are poorly constrained, as a regional unconformity at the base of Cretaceous foreland basin strata indicates that underlying Devonian source rocks may have undergone a burial and unroofing event prior to the Cretaceous. Published organic thermal maturity values from wells within the study area range from 1.59 and 2.46 %Ro for Devonian strata and 0.54 and 1.83 %Ro within Lower Cretaceous strata. Herein, we have resolved the thermal history of the Peel Plateau through multi-kinetic AFT thermochronology. Three samples from Upper Devonian, Lower Cretaceous and Upper Cretaceous strata have pooled AFT ages of 61.0 ± 5.1 Ma, 59.5 ± 5.2 and 101.6 ± 6.7 Ma, respectively, and corresponding U-Pb ages of 497.4 ± 17.5 Ma (MSWD: 7.4), 353.5 ± 13.5 Ma (MSWD: 3.1) and 261.2 ± 8.5 Ma (MSWD: 5.9). All AFT data fail the χ<sup>2</sup> test, suggesting AFT ages do not comprise a single statistically significant population, whereas U-Pb ages reflect the pre-depositional history of the samples and are likely from various provenances. Apatite chemistry is known to control the temperature and rates at which fission tracks undergo thermal annealing. The r<sub>mro</sub> parameter uses grain specific chemistry to predict apatite’s kinetic behaviour and is used to identify kinetic populations within samples. Grain chemistry was measured via electron microprobe analysis to derive r<sub>mro</sub> values and each sample was separated into two kinetic populations that pass the χ<sup>2</sup> test: a less retentive population with ages ranging from 49.3 ± 9.3 Ma to 36.4 ± 4.7 Ma, and a more retentive population with ages ranging from 157.7 ± 19 Ma to 103.3 ± 11.8 Ma, with r<sub>mr0</sub> benchmarks ranging from 0.79 and 0.82. Thermal history models reveal Devonian strata reached maximum burial temperatures (~165°C-185°C) prior to late Paleozoic to Mesozoic unroofing, and reheated to lower temperatures (~75°C-110°C) in the Late Cretaceous to Paleogene. Both Cretaceous samples record maximum burial temperatures (75°C-95°C) also during the Late Cretaceous to Paleogene. These new data indicate that Devonian source rocks matured prior to deposition of Cretaceous strata and that subsequent burial and heating during the Cretaceous to Paleogene was limited to the low-temperature threshold of the oil window. Integrating multi-kinetic AFT data with traditional methods in petroleum geosciences can help unravel complex thermal histories of sedimentary basins. Applying these methods elsewhere can improve the characterisation of petroleum systems.</p>


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Chunfang Cai ◽  
Chenlu Xu ◽  
Wenxiang He ◽  
Chunming Zhang ◽  
Hongxia Li

The potential parent source rocks except from Upper Permian Dalong Formation (P3d) for Upper Permian and Lower Triassic solid bitumen show high maturity to overmaturity with equivalent vitrinite reflectance (ERo) from 1.7% to 3.1% but have extractable organic matter likely not contaminated by younger source rocks. P3d source rocks were deposited under euxinic environments as indicated by the pyrite δ34S values as light as -34.5‰ and distribution of aryl isoprenoids, which were also detected from the Lower Silurian (S1l) source rock and the solid bitumen in the gas fields in the west not in the east. All the solid bitumen not altered by thermochemical sulfate reduction (TSR) has δ13C and δ34S values similar to part of the P3l kerogens and within the S1l kerogens. Thus, the eastern solid bitumen may have been derived from the P3l kerogens, and the western solid bitumen was likely to have precracking oils from P3l kerogens mixed with the S1l or P3d kerogens. This case-study tentatively shows that δ13C and δ34S values along with biomarkers have the potential to be used for the purpose of solid bitumen and source rock correlation in a rapidly buried basin, although further work should be done to confirm it.


2016 ◽  
Vol 56 (1) ◽  
pp. 173 ◽  
Author(s):  
Stephen Molyneux ◽  
Jeff Goodall ◽  
Roisin McGee ◽  
George Mills ◽  
Birgitta Hartung-Kagi

Why are the only commercial hydrocarbon discoveries in Lower Triassic and Permian sediments of the western margin of Australia restricted to the Perth Basin and the Petrel Sub-basin? Recent regional analysis by Carnarvon Petroleum has sought to address some key questions about the Lower Triassic Locker Shale and Upper Permian Chinty and Kennedy formations petroleum systems along the shallow water margin of the Carnarvon and offshore Canning (Roebuck/Bedout) basins. This paper aims to address the following questions:Source: Is there evidence in the wells drilled to date of a working petroleum system tied to the Locker Shale or other pre-Jurassic source rocks? Reservoir: What is the palaeogeography and sedimentology of the stratigraphic units and what are the implications for the petroleum systems?The authors believed that a fresh look at the Lower Triassic to Upper Permian petroleum prospectivity of the North West Shelf would be beneficial, and key observations arising from the regional study undertaken are highlighted:Few wells along a 2,000 km area have drilled into Lower Triassic Locker Shale or older stratigraphy. Several of these wells have been geochemically and isotopically typed to potentially non Jurassic source rocks. The basal Triassic Hovea Member of the Kockatea Shale in the Perth Basin is a proven commercial oil source rock and a Hovea Member Equivalent has been identified through palynology and a distinctive sapropelic/algal kerogen facies in nearly 16 wells that penetrate the full Lower Triassic interval on the North West Shelf. Samples from the Upper Permian, the Hovea Member Equivalent and the Locker Shale have been analysed isotopically indicating –28, –34 and –30 delta C13 averages, respectively. Lower Triassic and Upper Permian reservoirs are often high net to gross sands with up to 1,000 mD permeability and around 20% porosity. Depositional processes are varied, from Locker Shale submarine canyon systems to a mixed carbonate clastic marine coastline/shelf of the Upper Permian Chinty and Kennedy formations.


2021 ◽  
Vol 61 (2) ◽  
pp. 616
Author(s):  
Emmanuelle Grosjean ◽  
Dianne S. Edwards ◽  
Nadege Rollet ◽  
Christopher J. Boreham ◽  
Duy Nguyen ◽  
...  

The unexpected discovery of oil in Triassic sedimentary rocks of the Phoenix South 1 well on Australia’s North West Shelf (NWS) has catalysed exploration interest in pre-Jurassic plays in the region. Subsequent neighbouring wells Roc 1–2, Phoenix South 2–3 and Dorado 1–3 drilled between 2015 and 2019 penetrated gas and/or oil columns, with the Dorado field containing one of the largest oil resources found in Australia in three decades. This study aims to understand the source of the oils and gases of the greater Phoenix area, Bedout Sub-basin using a multiparameter geochemical approach. Isotopic analyses combined with biomarker data confirm that these fluids represent a new Triassic petroleum system on the NWS unrelated to the Lower Triassic Hovea Member petroleum system of the Perth Basin. The Bedout Sub-basin fluids were generated from source rocks deposited in paralic environments with mixed type II/III kerogen, with lagoonal organofacies exhibiting excellent liquids potential. The Roc 1–2 gases and the Phoenix South 1 oil are likely sourced proximally by Lower–Middle Triassic TR10–TR15 sequences. Loss of gas within the Phoenix South 1 fluid due to potential trap breach has resulted in the formation of in-place oil. These discoveries are testament to new hydrocarbon plays within the Lower–Middle Triassic succession on the NWS.


2006 ◽  
Vol 46 (1) ◽  
pp. 261 ◽  
Author(s):  
C.O.E. Hallmann ◽  
K.R. Arouri ◽  
D.M. McKirdy ◽  
L. Schwark

The history of petroleum exploration in central Australia has been enlivened by vigorous debate about the source(s) of the oil and condensate found in the Cooper/Eromanga basin couplet. While early workers quickly recognized the source potential of thick Permian coal seams in the Patchawarra and Toolachee Formations, it took some time for the Jurassic Birkhead Formation and the Cretaceous Murta Formation to become accepted as effective source rocks. Although initially an exploration target, the Cambrian sediments of the underlying Warburton Basin subsequently were never seriously considered to have participated in the oil play, possibly due to a lack of subsurface information as a consequence of limited penetration by only a few widely spaced wells. Dismissal of the Warburton sequence as a source of hydrocarbons was based on its low generative potential as measured by total organic carbon (TOC) and Rock-Eval pyrolysis analyses. As most of the core samples analysed came from the upper part of the basin succession that has been subjected to severe weathering and oxidation, these results might not reflect the true nature of the Warburton Basin’s source rocks. We analysed a suite of source rock extracts, DST oils and sequentially extracted reservoir bitumens from the Gidgealpa field for conventional hydrocarbon biomarkers as well as nitrogen-containing carbazoles. The resulting data show that organic facies is the main control on the distribution of alkylated carbazoles in source rock extracts, oils and sequentially extracted bitumens. The distribution pattern of alkylcarbazoles allows to distinguish between rocks of Jurassic, Permian and pre-Permian age, thereby exceeding the specificity of hydrocarbon biomarkers. While no pre-Permian signature can be found in the DST oils, it is present in sequentially extracted residual oils. However, the pre-Permian molecular source signal is diluted beyond recognition during conventional extraction procedures. The bitumens that are characterised by a pre-Permian geochemical signature derive from differing pore-filling oil pulses and exhibit calculated maturities of up to 1.6% Rc, thereby proving for the first time the petroleum generative capability of source rocks in the Warburton Basin.


2010 ◽  
Vol 50 (2) ◽  
pp. 728 ◽  
Author(s):  
Herbert Volk ◽  
Manzur Ahmed ◽  
Chris Boreham ◽  
Peter Tingate ◽  
Neil Sherwood ◽  
...  

The Gippsland Basin is one of the most prolific petroleum provinces in Australia, yet the understanding of source, migration and secondary alteration of petroleum is often based on data and concepts that have been developed decades ago. For instance, the Gippsland Basin is commonly cited as an explicit example of a province dominated by oil from coal, yet there is no literature using molecular and isotope geochemistry explicitly demonstrating that generation and expulsion has been from the coal seams and not the intervening carbonaceous mudstones. In this study we will present insights from the evaluation of quantitative analyses of aromatic hydrocarbons, which will be evaluated together with low molecular weight hydrocarbon distributions from whole oil gas chromatography and aliphatic biomarker distributions of the oils. Oils are commonly incrementors of different charge events, and hence extending molecular and isotopic information from a wide molecular weight range offers a more detailed insight into the charge history of an oil field. Oil-bearing fluid inclusions are additional archives that hold keys to the fill history of petroleum reservoirs, and this contribution will also present new data on the distribution and composition of palaeo-oils trapped in fluid inclusions. Lastly, examples will be presented of how modern tools for analysis such as compound specific isotopic analysis (CSIA) of n-alkanes and isoprenoids as well as how understanding relationships between organic facies and source rock kinetics can contribute to refining our understanding of petroleum systems in the Gippsland Basin.


2012 ◽  
Vol 52 (1) ◽  
pp. 29
Author(s):  
Totterdell Jennie

The 2012 Australian offshore acreage release includes exploration areas in four southern margin basins. Three large Release Areas in the frontier Ceduna Sub-basin lie adjacent to four exploration permits granted in 2011. The petroleum prospectivity of the Ceduna Sub-basin is controlled by the distribution of Upper Cretaceous marine and deltaic facies and a structural framework established by Cenomanian growth faulting. These Release Areas offer a range of plays charged by Cretaceous marine and coaly source rocks and Jurassic lacustrine sediments. In the westernmost part of the gas-producing Otway Basin, a large Release Area offers numerous opportunities to test existing and new play concepts in underexplored areas beyond the continental shelf. Gas and oil shows in the eastern part of the Release Area confirm the presence of at least two working petroleum systems. In the eastern Otway Basin, several Release Areas are offered in shallow water on the eastern flank of the highly prospective Shipwreck Trough and provide untested targets along the eastern basin margin southward into Tasmanian waters. To the south, a large Release Area in the frontier Sorell Basin provides the opportunity to explore a range of untested targets in depocentres that formed along the western Tasmanian transform continental margin. Two Release Areas offer exploration potential in the under-explored eastern deepwater part of the Gippsland Basin. Geological control is provided by several successful wells indicating the presence of both gas and liquids in the northern area, while the southern area represents the remaining frontier of the basin


1996 ◽  
Vol 36 (1) ◽  
pp. 248 ◽  
Author(s):  
B.A. McConachie ◽  
M.T. Bradshaw ◽  
J. Bradshaw

A petroleum system evaluation of the Petrel Sub-basin in the Bonaparte Gulf, northwest Australia, suggests that the wells drilled in the area have not fully evaluated the petroleum potential. Some of the lowest risk plays in the basin have not been tested adequately or have not been assessed in probable economic fairways.Several important discoveries have highlighted the existence of at least three petroleum systems in the Petrel Sub-basin; Larapintine, Transitional and Gondwanan. Best known are the Gondwanan gas discoveries at Petrel, Tern and most recently Fishburn, where hydrocarbons are reservoired in Late Permian sandstones and are probably sourced from Permian deltaic sequences. Kurt her inshore, oil has been recovered from Carboniferous and Early Permian reservoirs at Turtle and Barnett. The source of the oil is considered to be Carboniferous anoxic marine shales of a distinct petroleum system transitional between the Gondwanan and Larapintine systems (Milligans Formation source rock and Late Carboniferous to Permian reservoirs). Onshore, there is a gas discovery at Gariinala-1 and significant oil shows in Ningbing-1, in Late Devonian Larapintine system rocks. Geochemical analysis of the oil shows it to be sourced from a carbonate marine source rock, different from the clastic derived oils obtained from Turtle and Barnett.Recent discoveries in the Timor Sea have provoked a re-assessment of the very similar, largely untested, Mesozoic, Westralian petroleum system in the outer part of the Petrel Sub-basin. The prospective Mesozoic play fairway occurs in the northern part of the Petrel Sub-basin, extending into Area B of the Zone of Cooperation.


2016 ◽  
Vol 56 (2) ◽  
pp. 594
Author(s):  
Lisa Hall ◽  
Tehani Palu ◽  
Chris Boreham ◽  
Dianne Edwards ◽  
Tony Hill ◽  
...  

The Australian Petroleum Source Rocks Mapping project is a new study to improve understanding of the petroleum resource potential of Australia’s sedimentary basins. The Permian source rocks of the Cooper Basin, Australia’s premier onshore hydrocarbon-producing province, are the first to be assessed for this project. Quantifying the spatial distribution and petroleum generation potential of these source rocks is critical for understanding both the conventional and unconventional hydrocarbon prospectivity of the basin. Source rock occurrence, thickness, quality and maturity are mapped across the basin, and original source quality maps prior to the onset of generation are calculated. Source rock property mapping results and basin-specific kinetics are integrated with 1D thermal history models and a 3D basin model to create a regional multi-1D petroleum systems model for the basin. The modelling outputs quantify both the spatial distribution and total maximum hydrocarbon yield for 10 source rocks in the basin. Monte Carlo simulations are used to quantify the uncertainty associated with hydrocarbon yield and to highlight the sensitivity of results to each input parameter. The principal source rocks are the Permian coals and carbonaceous shales of the Gidgealpa Group, with highest potential yields from the Patchawarra Formation coals. The total generation potential of the Permian section highlights the significance of the basin as a world-class hydrocarbon province. The systematic workflow applied here demonstrates the importance of integrated geochemical and petroleum systems modelling studies as a predictive tool for understanding the petroleum resource potential of Australia’s sedimentary basins.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 371
Author(s):  
Xiaofeng Xie ◽  
Zhenning Yang ◽  
Huan Zhang ◽  
Ali Polat ◽  
Yang Xu ◽  
...  

The middle Mesoproterozoic is a crucial time period for understanding the Precambrian tectonic evolutionary history of the northern Yangtze Block and its relationship with the supercontinent Columbia. The Dagushi Group (Gp) is one of the Mesoproterozoic strata rarely found at the northern margin of the Yangtze Block. U–Pb geochronology and Lu–Hf isotopic analyses of detrital zircons were analyzed for three metamorphic quartz sandstone samples collected from the Luohanling and Dangpuling formations of the Dagushi Gp. These metasandstones yielded major zircon populations at ~2.65 Ga and ~1.60 Ga, respectively. The ~1.60 Ga ages first discovered yield a narrow range of ɛHf(t) values from −1.8 to +1.8, which lie above the old crust evolutionary line of the Yangtze Block, suggesting the addition of mantle material. Trace element data indicate that ~1.60 Ga detrital zircons share a basic provenance, whereby they have low Hf/Th and high Nb/Yb ratios. Zircon discrimination diagrams suggest that the ~1.60 Ga detrital zircon source rocks formed in an intra-plate rifting environment. Dagushi Gp provenance studies indicate that the ~1.60 Ga detrital zircon was most likely sourced from the interior Yangtze Block. Thus, we suggest that the late Paleoproterozoic to early Mesoproterozoic continental break-up occurred at the northern margin of the Yangtze Block.


Sign in / Sign up

Export Citation Format

Share Document