scholarly journals Finding of Ca. 1.6 Ga Detrital Zircons from the Mesoproterozoic Dagushi Group, Northern Margin of the Yangtze Block

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 371
Author(s):  
Xiaofeng Xie ◽  
Zhenning Yang ◽  
Huan Zhang ◽  
Ali Polat ◽  
Yang Xu ◽  
...  

The middle Mesoproterozoic is a crucial time period for understanding the Precambrian tectonic evolutionary history of the northern Yangtze Block and its relationship with the supercontinent Columbia. The Dagushi Group (Gp) is one of the Mesoproterozoic strata rarely found at the northern margin of the Yangtze Block. U–Pb geochronology and Lu–Hf isotopic analyses of detrital zircons were analyzed for three metamorphic quartz sandstone samples collected from the Luohanling and Dangpuling formations of the Dagushi Gp. These metasandstones yielded major zircon populations at ~2.65 Ga and ~1.60 Ga, respectively. The ~1.60 Ga ages first discovered yield a narrow range of ɛHf(t) values from −1.8 to +1.8, which lie above the old crust evolutionary line of the Yangtze Block, suggesting the addition of mantle material. Trace element data indicate that ~1.60 Ga detrital zircons share a basic provenance, whereby they have low Hf/Th and high Nb/Yb ratios. Zircon discrimination diagrams suggest that the ~1.60 Ga detrital zircon source rocks formed in an intra-plate rifting environment. Dagushi Gp provenance studies indicate that the ~1.60 Ga detrital zircon was most likely sourced from the interior Yangtze Block. Thus, we suggest that the late Paleoproterozoic to early Mesoproterozoic continental break-up occurred at the northern margin of the Yangtze Block.

Author(s):  
Guangyou Zhu ◽  
Huichuan Liu ◽  
Tingting Zhang ◽  
Weiyan Chen ◽  
Jianwei Xiao ◽  
...  

Contrasting models for internal versus external locations of the South China Craton (SCC) in the supercontinent Rodinia and associated mantle plume or ocean subduction dominated tectonic processes can be resolved by detrital zircon U-Pb dating and Lu-Hf isotopic analyses on the Cryogenian Nanhua Supergroup in the central SCC. Our results show that samples from the lower Liantuo, Tiesi’ao, and Datangpo formations of the Nanhua Supergroup show three age peaks at 2.50 Ga, 2.05 Ga, and 0.85 Ga, and those of the upper Nantuo Formation yield four peaks at 2.50 Ga, 2.05 Ga, 0.85 Ga, and 0.65 Ga. The Archean and Paleoproterozoic (1.80−2.10 Ga) zircons have εHf(t) values of −16.3 to +4.7 and −23.0 to +4.2, and may be sourced from the Kongling and Douling complexes and Paleoproterozoic intrusions in the northern Yangtze Block, respectively. Early Neoproterozoic (0.70−0.96 Ga) zircon grains show variable εHf(t) values of −20.0 to +15.0. In combination with the absence of Mesoproterozoic detrital zircons in the Nanhua Supergroup, huge volumes of Neoproterozoic granitic intrusions in the northern Yangtze Block are the potential sources for the 0.70−0.96 Ga detrital zircons. Only the siltstone of the Nantuo Formation has late Neoproterozoic (0.63−0.69 Ga) detrital zircons with high and positive εHf(t) values (+7.9 to +9.4). Several granitoid intrusions (0.63−0.68 Ga) in the Wudang and Ankang uplift of the South Qinling belt in the northern Yangtze Block provide the late Neoproterozoic detrital zircons of the Nantuo Formation. These provenance analyses of the Nanhua Supergroup indicate an interior source from the SCC, rather than an exterior source from the Laurentia and Australia cratons. The Neoproterozoic rift basins and magmatic rocks in the SCC were produced by secular episodic subductions and back-arc extensions, rather than a Neoproterozoic super-mantle plume. The SCC occupied a peripheral position adjacent to northern India in Rodinia during the Neoproterozoic. These conclusions will promote our understanding of genetic mechanism and distribution prediction of the several Cryogenian−Cambrian black-shale layers and excellent source rocks in the SCC.


2017 ◽  
Vol 156 (3) ◽  
pp. 547-571 ◽  
Author(s):  
GUANZHONG SHI ◽  
GUANGZENG SONG ◽  
HUA WANG ◽  
CHUANYAN HUANG ◽  
BEN LI

AbstractThe Solonker and Shalazhashan belts are hotly debated tectonic units of the Central Asian Orogenic Belt (CAOB), because they may either represent a Permian or Triassic suture zone of the CAOB, or a rifting zone overprinted on an Early Palaeozoic orogen. Provenance analysis of the Upper Palaeozoic sandstones in these belts may provide useful constraints on this issue. This study collected six sandstone samples from three study areas: the Mandula area of the Solonker Belt, the Quagan Qulu area of the Shalazhashan Belt but close to the Alxa block, and the Enger Us area of the Shalazhashan Belt, for framework petrography, zircon morphology, U–Pb and Lu–Hf isotopic analyses. Framework petrography reveals that the Mandula and Enger Us area samples contain high proportions of volcanic fragments, whereas the samples from the Quagan Qulu area include not only volcanic fragments but also significant amounts of biotite and muscovite. The detrital zircons of the Mandula area and the Enger Us area yield two main age groups: (i) 260–330 Ma, with dominant εHf(t) values of –5 to +12; and (ii) 420–550 Ma, with dominant εHf(t) values of –9 to +9, suggesting that Early Palaeozoic arc-related magmatic rocks and Late Palaeozoic syn-depositional volcanic rocks are the main source rocks. The detrital zircons of the Quagan Qulu area have one main age group of 420–500 Ma and some grains of 0.9–1.1 Ga, 1.4–1.5 Ga, 1.8–1.9 Ga and ~ 2.5 Ga, which derive from the northern margin of the Alxa block. The lithological and fossil assemblages of the Upper Palaeozoic sandstones suggest shallow-marine to deep-water depositional environments and a northward-deepening transition. Based on the zircon spectra, sedimentary environment analysis and previous studies, we argue that the Solonker Belt and the Shalazhashan Belt of the CAOB are in extensional basins of a fore-arc or rifting setting.


2021 ◽  
Author(s):  
Qian Wang ◽  
Guochun Zhao ◽  
Yigui Han ◽  
Jinlong Yao

<p>The Chinese North Tianshan (CNTS) extends E-W along the southern part of the Central Asian Orogenic Belt and has undergone complicated accretion-collision processes in the Paleozoic. This study attempts to clarify the late Paleozoic tectonism in the region by investigating the provenance of the Late Paleozoic sedimentary successions from the Bogda Mountain in the eastern CNTS by U-Pb dating and Lu-Hf isotopic analyses of detrital zircons. Detrital zircon U-Pb ages (N=519) from seven samples range from 261 ± 4 Ma to 2827 ± 32 Ma, with the most prominent age peak at 313 Ma. There are Precambrian detrital zircon ages (~7%) ranged from 694 to 1024 Ma. The youngest age components in each sample yielded weighted mean ages ranging from 272 ± 9 Ma to 288 ± 5 Ma, representing the maximum depositional ages. These and literature data indicate that some previously-assumed “Carboniferous” strata in the Bogda area were deposited in the Early Permian, including the Qijiaojing, Julideneng, Shaleisaierke, Yangbulake, Shamaershayi, Liushugou, Qijiagou, and Aoertu formations. The low maturity of the sandstones, zircon morphology and provenance analyses indicate a proximal sedimentation probably sourced from the East ­Junggar Arc and the Harlik-Dananhu Arc in the CNTS. The minor Precambrian detrital zircons are interpreted as recycled materials from the older strata in the Harlik-Dananhu Arc. Zircon ɛ<sub>Hf</sub>(t) values have increased since ~408 Ma, probably reflecting a tectonic transition from regional compression to extension. This event might correspond to the opening of the Bogda intra-arc/back arc rift basin, possibly resulting from a slab rollback during the northward subduction of the North Tianshan Ocean. A decrease of zircon ɛ<sub>Hf</sub>(t) values at ~300 Ma was likely caused by the cessation of oceanic subduction and subsequent collision, which implies that the North Tianshan Ocean closed at the end of the Late Carboniferous. This research was financially supported by the Youth Program of Shaanxi Natural Science Foundation (2020JQ-589), the NSFC Projects (41730213, 42072264, 41902229, 41972237) and Hong Kong RGC GRF (17307918).</p>


Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-20
Author(s):  
Shao-Hua Zhang ◽  
Wei-Qiang Ji ◽  
Hao Zhang ◽  
Guo-Hui Chen ◽  
Jian-Gang Wang ◽  
...  

Abstract The Xigaze forearc sediments revealed the part of the tectonomagmatic history of the Gangdese arc that the bedrocks did not record. However, the sediments’ development is restricted to the region around and west of Xigaze City. Whether the eastern segment of the arc had a corresponding forearc basin is yet to be resolved. In this study, a field-based stratigraphic study, detrital zircon U-Pb geochronology (15 samples), and Hf isotopic analyses (11 of the 15 samples) were carried out on four sections in the Milin-Zedong area, southeast Tibet. The analytical results revealed the existence of three distinct provenances. The lower sequence is characterized by fine-grained sandstone, interbedded mudstone, and some metamorphic rocks (e.g., gneiss and schist). The detrital zircon U-Pb age distribution of this sequence is analogous to those of the Carboniferous-Permian strata and metasediments of the Nyingtri group in the Lhasa terrane. The middle and upper sequences are predominantly composed of medium- to coarse-grained volcaniclastic/quartzose sandstones, which are generally interbedded with mudstone. The detrital zircon U-Pb ages and Hf isotope signatures indicate that the middle sequences are Jurassic to Early Cretaceous in age (~200–100 Ma) and show clear affinity with the Gangdese arc rocks, that is, positive εHft values. In contrast, the upper sequences are characterized by Mesozoic detrital zircons (150–100 Ma) and negative εHft values, indicative of derivation from the central Lhasa terrane. The overall compositions of the detrital zircon U-Pb ages and Hf isotopes of the middle to upper sequences resemble those of the Xigaze forearc sediments, implying that related forearc sediments may have been developed in the eastern part of the Gangdese arc. It is possible that the forearc equivalents were eroded or destroyed during the later orogenesis. Additionally, the detrital zircons from these forearc sediments indicate that this segment of the Gangdese arc experienced more active and continuous magmatism from the Early Jurassic to Early Cretaceous than its bedrock records indicate.


Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 333 ◽  
Author(s):  
Wei Liu ◽  
Xiaoyong Yang ◽  
Shengyuan Shu ◽  
Lei Liu ◽  
Sihua Yuan

Zircon U–Pb dating and Hf isotopic analyses are performed on clastic rocks, sedimentary tuff of the Dongchuan Group (DCG), and a diabase, which is an intrusive body from the base of DCG in the SW Yangtze Block. The results provide new constraints on the Precambrian basement and the Late Paleoproterozoic to Mesoproterozoic tectonic evolution of the SW Yangtze Block, South China. DCG has been divided into four formations from the bottom to the top: Yinmin, Luoxue, Heishan, and Qinglongshan. The Yinmin Formation, which represents the oldest rock unit of DCG, was intruded by a diabase dyke. The oldest zircon age of the clastic rocks from the Yinmin Formation is 3654 Ma, with εHf(t) of −3.1 and a two-stage modeled age of 4081 Ma. Another zircon exhibits an age of 2406 Ma, with εHf(t) of −20.1 and a two-stage modeled age of 4152 Ma. These data provide indirect evidence for the residues of the Hadean crustal nuclei in the Yangtze Block. In combination with the published data, the ages of detrital zircons from the Yinmin Formation yielded three peak ages: 1.84, 2.30 and 2.71 Ga. The peaks of 1.84 and 2.71 Ga are global in distribution, and they are best correlated to the collisional accretion of cratons in North America. Moreover, the peak of 1.84 Ga coincides with the convergence of the global Columbia supercontinent. The youngest age of the detrital zircon from the Yinmin Formation was 1710 Ma; the age of the intrusive diabase was 1689 ± 34 Ma, whereas the weighted average age of the sedimentary tuff from the Heishan Formation was 1414 ± 25 Ma. It was presumed that the depositional age for DCG was 1.71–1.41 Ga, which was in accordance with the timing of the breakup of the Columbia supercontinent. At ~1.7 Ga, the geochemical data of the diabase were characterized by E-MORB and the region developed the same period A-type granites. Thus, 1.7 Ga should represent the time of the initial breakup of the Yangtze Block. Furthermore, the Yangtze Block continues to stretch and breakup until ~1.4 Ga, which is characterized by the emergence of oceanic island, deep-sea siliceous rock and flysch, representing the final breakup. In brief, the tectonic evolution of the Yangtze Block during the Late Paleoproterozoic to Mesoproterozoic coincided with the events caused by the convergence and breakup of the Columbia supercontinent, because of which, the Yangtze Block experienced extensive magmatic activity and sedimentary basin development during this period.


Author(s):  
Qiong Chen ◽  
Guochun Zhao ◽  
Min Sun

Neoproterozoic to Paleozoic sedimentation shows systematic temporal-spatial variations within South China, which must be considered in reconstructing geological evolution of South China in response to global plate reorganization from the breakup of Rodinia to the assembly of Gondwana. We use >1000 new U-Pb and Hf isotopic data for detrital zircons from Neoproterozoic−Cambrian strata across the western (i.e., Longmenshan) and eastern (i.e., Wuyishan) margins of South China, coupled with compiled stratigraphic and magmatic information, to constrain change in provenance through time. First-order conclusions are as follows: (1) detrital zircons from the Neoproterozoic strata of the two margins were mainly sourced from the Panxi-Hannan arc and the Jiangnan orogen, signaling a rough self-sufficient sedimentary system; (2) newly identified Cambrian molasse-like sediments in the western margin, in which abundant detrital zircons are 550−500 Ma old with positive εHf(t) values, were mainly derived from the 580−500 Ma Cadomian arc belt along the Iran-Turkey margin; and (3) the Cambrian sediments in the eastern margin document more increased contributions from the Grenvillian-age provinces most possibly in Australia. Such spatial-temporal provenance variations signal the northward drifting of South China, from a position connecting with Iran-Turkey and northern India to that approaching Australia during the late Neoproterozoic−Cambrian period. We highlight that the activity of oblique oceanic-continental convergence accreted Asian terranes onto the northern margin of Gondwana, hence contributing to the ultimate Gondwana architecture under global plate reorganization.


2021 ◽  
Author(s):  
Ariuntsetseg Ganbat ◽  
Tatsuki Tsujimori ◽  
Laicheng Miao ◽  
Inna Safonova ◽  
Daniel Pastor-Galán ◽  
...  

The Mongol–Okhotsk Belt, the youngest segment of the Central Asian Orogenic Belt, formed by the evolution and closure of the Mongol–Okhotsk Ocean. The oceanic closure formed two volcanoplutonic belts: Selenge Belt in the north and Middle Gobi Belt in the south (in present day coordinates). However, the origin and tectonic evolution of the Mongol–Okhotsk Belt in general, the origin and formation age of the Middle Gobi Belt in particular, remain enigmatic. To better understand the history of the magmatic activity in the Middle Gobi Belt, we conducted geochemical, U–Pb geochronological, zircon Hf, whole-rock Nd isotopic analyses of volcanic and plutonic rocks of the Mandalgovi suite, the major component of the Middle Gobi Belt. Our results show that the Mandalgovi suite consists of (i) 265 ± 2 Ma biotite-granite; (ii) 250 ± 3 Ma hornblende-granitoids; (iii) their volcanic equivalents of both: and (iv) gabbro-diorites. The geochemical compositions indicate that their precursor magmas were derived from crustal source. The protoliths of the biotite and hornblende-granitoids were metagraywacke and metabasalt, respectively. They are characterized by positive whole-rock εNd(t) and zircon εHf(t) values, indicating the molten protoliths were juvenile crust. The biotite-granites formed by remelting of fore-arc sediments by ridge subduction and later hornblende-granites were emplaced at an intra-oceanic arc by the subduction of the Mongol–Okhotsk Ocean. We conclude that the magmatic rocks of the Middle Gobi formed in an active continental margin and/or intra-oceanic arc setting.


Author(s):  
Bingshuang Zhao ◽  
Xiaoping Long ◽  
Jin Luo ◽  
Yunpeng Dong ◽  
Caiyun Lan ◽  
...  

The crustal evolution of the Yangtze block and its tectonic affinity to other continents of Rodinia and subsequent Gondwana have not been well constrained. Here, we present new U-Pb ages and Hf isotopes of detrital zircons from the late Neoproterozoic to early Paleozoic sedimentary rocks in the northwestern margin of the Yangtze block to provide critical constraints on their provenance and tectonic settings. The detrital zircons of two late Neoproterozoic samples have a small range of ages (0.87−0.67 Ga) with a dominant age peak at 0.73 Ga, which were likely derived from the Hannan-Micangshan arc in the northwestern margin of the Yangtze block. In addition, the cumulative distribution curves from the difference between the depositional age and the crystalline age (CA−DA) together with the mostly positive εHf(t) values of these zircon crystals (−6.8 to +10.7, ∼90% zircon grains with εHf[t] > 0) suggest these samples were deposited in a convergent setting during the late Neoproterozoic. In contrast, the Cambrian−Silurian sediments share a similar detrital zircon age spectrum that is dominated by Grenvillian ages (1.11−0.72 Ga), with minor late Paleoproterozoic (ca. 2.31−1.71 Ga), Mesoarchean to Neoarchean (3.16−2.69 Ga), and latest Archean to early Paleoproterozoic (2.57−2.38 Ga) populations, suggesting a significant change in the sedimentary provenance and tectonic setting from a convergent setting after the breakup of Rodinia to an extensional setting during the assembly of Gondwana. However, the presence of abundant Grenvillian and Neoarchean ages, along with their moderately to highly rounded shapes, indicates a possible sedimentary provenance from exotic continental terrane(s). Considering the potential source areas around the Yangtze block when it was a part of Rodinia or Gondwana, we suggest that the source of these early Paleozoic sediments had typical Gondwana affinities, such as the Himalaya, north India, and Tarim, which is also supported by their stratigraphic similarity, newly published paleomagnetic data, and tectono-thermal events in the northern fragments of Gondwana. This implies that after prolonged subduction in the Neoproterozoic, the northwestern margin of the Yangtze block began to be incorporated into the assembly of Gondwana and then accept sediments from the northern margin of Gondwanaland in a passive continental margin setting.


2016 ◽  
Vol 53 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Xiao Ma ◽  
Kunguang Yang ◽  
Xuegang Li ◽  
Chuangu Dai ◽  
Hui Zhang ◽  
...  

The Jiangnan Orogeny generated regional angular unconformities between the Xiajiang Group and the underlying Sibao Group in the western Jiangnan Orogen along the southeastern margin of the Yangtze Block in southeast Guizhou, South China. Laser ablation – inductively coupled plasma – mass spectrometry (LA–ICP–MS) U–Pb zircon dating of two samples of the Motianling granitic pluton yielded U–Pb zircon ages of 826.2 ± 3.4 and 825.5 ± 6.1 Ma, with an average age of 825.6 ± 3.0 Ma, which is considered the minimum depositional age of the Sibao Group. The U–Pb ages of the youngest detrital zircon grains from the Sibao Group and the Xiajiang Group yielded average ages of 834.9 ± 3.8 and 794.6 ± 4.2 Ma, respectively. The depositional age of the Sibao Group can be constrained at 825–835 Ma, and deposition of the Xiajiang Group did not begin before ca. 800 Ma. These results suggest that the Jiangnan Orogeny, which led to the assembly of the Yangtze and Cathaysia blocks, ended at 795–835 Ma on the western segment of the Jiangnan Orogen. The detrital zircon distribution spectrums of the Sibao and Xiajiang groups suggest a provenance from Neoproterozoic basement sedimentary sequences along with a mixture of local Neoproterozoic subduction-related felsic granitoids, distant plutons from the western Yangtze Block and eastern Jiangnan Orogen, and recycled materials from the interior of the Yangtze Block. By comparing the basin evolution histories and magmatic and metamorphic events along the continental margins of the Rodinia supercontinent, it is proposed that the South China Block might have been located at the periphery, adjacent to North India and East Antarctica, rather than in the interior of Rodinia in Neoproterozoic time.


1997 ◽  
Vol 34 (9) ◽  
pp. 1286-1294 ◽  
Author(s):  
D. K. McDaniel ◽  
G. N. Hanson ◽  
S. M. McLennan ◽  
J. H. Sevigny

The Trap Falls Formation is a sequence of interlayered quartzites and schists that crops out in the Appalachian belt in southern Connecticut, and was deformed and metamorphosed to middle amphibolite grade during Acadian orogenesis. Schists have high Al2O3 and low CaO, Na2O, and K2O (chemical index of alteration CIA = 68–70), consistent with a significant weathering history in the sediment source. Rare earth element (REE) patterns for both schists and quartzites parallel post-Archean average Australian Shale, with light REE enrichment and well-developed Eu anomalies, suggesting an average upper crustal source. Whole-rock Nd and Pb isotopic analyses indicate old sources, with depleted mantle model ages (TDM) from 1880 to 1660 Ma, 207Pb/204Pb from 15.62 to 15.87, and 206Pb/204Pb from 19.11 to 22.08. U–Pb ages for single-grain and multigrain populations of detrital zircons range between 1113 and 992 Ma, the youngest of which defines a maximum depositional age for the Trap Falls Formation. U–Pb zircon ages indicate a late Grenvillian source for the zircons. Nd and Pb isotopic compositions are consistent with a source that is dominated by Grenville-age rocks with some component of older crust. Combining all of the data, we interpret that the protolith of the Trap Falls Formation was comprised of aluminous muds interbedded with clean quartz arenites, and suggest that they were deposited on the stable, trailing-edge margin of North America sometime during the Late Proterozoic to the Early Cambrian. The sediments were derived from a weathered source with an upper continental crust composition. Isotopic data and zircon ages indicate that this source was dominated by Grenville-age rocks.


Sign in / Sign up

Export Citation Format

Share Document