TECTONIC FRAMEWORK OF AUSTRALIA'S SEDIMENTARY BASINS

1982 ◽  
Vol 22 (1) ◽  
pp. 283 ◽  
Author(s):  
J. J. Veevers ◽  
J. G. Jones ◽  
C. McA. Powell

Two morphotectonic features dominated the development of Australia's Phanerozoic sedimentary basins: a rifted arch on the divergent western and southern margins, such as exists today in East Africa-Arabia, and a volcanic arc on the convergent eastern margin, such as the present Andaman-Sumatran Arc. A presumed rifted-arch system, associated on one side with the growth of the Tethyan Ocean and on the other with failed arms, developed in northwest Australia from the beginning of the Phanerozoic. A second system developed in the same area and extended southward between Greater India and Australia in the Late Carboniferous and evolved in the Late Jurassic and Early Cretaceous into the eastern Indian Ocean. Also in the Late Jurassic a rifted-arch system developed along the southern margin between Antarctica and Australia and in the Late Cretaceous evolved into the southeast Indian Ocean. On both margins the rifted-arch system was succeeded for some 30 to 40 Ma by rim basins confined between the continent and an uplifted rim alongside the continent-ocean boundary, so that restricted marine sediment was deposited over a terrain of rift-valley fluvial sediment cut into fault blocks in a configuration favourable to petroleum accumulation. In the Ceduna Plateau depocentre of the Great Australian Bight Basin a very thick rim basin was deposited in a saddle of the rifted-arch system from a copious provenance in the ancestral Eastern Highlands. On both margins the rim basins were overlain by open marine deposits, mainly carbonate, of varying thickness.The convergent eastern margin started also at the beginning of the Phanerozoic, and developed through marginal sea opening and filling behind an island arc; widespread deformation then followed, and led in the Early Silurian to the development of a basin-and- range terrain. In the Late Devonian, a volcanic arc appeared along the continental margin, and subsequently jumped eastward twice to the mid-Cretaceous. The succession of jumps generated a vertical sequence of basins that at any one time existed side by side, so that the fore-arc basin is overlain by the foreland, in turn overlain by the pericratonic basin. The foreland and pericratonic basins, on the landward side of the volcanic arc, received volcanogenic sediment, prone to be marine, from the arc, and quartzose sediment, prone to be fluvial, from the craton; the foreland basin was subjected to shearing from transcurrent motion along the arc, so that growth structures provided receptacles for petroleum generated by heat flow from the arc. The marginal marine volcanogenic sediment was the main source and the interfingering fluvial quartz sand the reservoir.Three tectonic regimes can be recognized, and are characterized by intervals of relatively constant latitude, climate, depositional facies, and plate configuration. A Pre-Gondwanan regime, 570 to 320 Ma ago, of low latitude, started with plate divergence on the northwest and convergence on the east, and ended with widespread deformation in the east and centre, of an age and kind similar to that affecting the ancestral Rocky Mountains of North America. A Gondwanan regime, from 320 to 95 Ma, of high latitude, with rare evaporites and carbonates, started with a rift-valley system along the western margin that developed into the Indian Ocean 160 to 125 Ma ago, and an arc jump on the east; and ended with the separation of Antarctica and Australia (by the splitting of a rifted arch) on the south, and of Australia and Lord Howe Rise (by the splitting of an arc) on the east. A Post-Gondwanan regime, 95 to 0 Ma ago, of diminishing latitude, has restored carbonates to Australia along its divergent margins, and in the north, in New Guinea, a continental margin volcanic arc, similar to the Gondwanan arcs, has led to uplift in the Neogene.

1996 ◽  
Vol 133 (2) ◽  
pp. 127-136 ◽  
Author(s):  
Taniel Danelian ◽  
Alastair H. F. Robertson ◽  
Sarantis Dimitriadis

AbstractWell-preserved Radiolaria have been discovered in calcareous silt turbidites and mudstones intercalated with basic extrusives of the Guevgueli Ophiolite, northern Greece. The mudstones contain terrigenous silt, probably derived from adjacent continental basement of the Serbo-Macedonian and/or Paikon units. Volcanic quartz and rare volcanic glass were probably derived from an active continental margin arc (Paikon volcanic arc) to the west. The radiolarian sediments were deposited within fault-controlled hollows in the ophiolitic extrusives, and then covered by massive and pillowed extrusives. The radiolarian assemblage is indicative of an early Late Jurassic (Oxfordian) age, which therefore dates the genesis of the Guevgueli Ophiolite. Our data are consistent with the age of the intrusive Late Jurassic Fanos Granite, believed to be contemporaneous with the Guevgueli Ophiolite. In general, the Guevgueli and related ophiolites of northern Greece are thought to have formed within a transtensional intra-continental marginal basin, generated in response to oblique eastward subduction of older Tethyan oceanic crust (Almopias ocean).


2019 ◽  
Vol 59 (4) ◽  
pp. 656-669
Author(s):  
A. Zabanbark ◽  
L. I. Lobkovsky

At the limit of the East-Canadian continental margin there are three oil and gas regions from north to south: Labrador Sea shelves, margins of the Great Newfoundland Bank and the continental margin of Nova Scotia. In each of these distinguishing regions are a number of sedimentary basins completely plunging under the water. At the shelf of Labrador Sea distinguishing the following large sedimentary basins: Saglek, Hopdale and Havke, at the margin of Newfoundland Bank it is known the basins: Jeanne d’Arc, Flemish Pass and Orphan. At the Nova Scotia shelf there are Nova Scotian and Sable basins. It is remarkable at the lofty latitude like of Labrador Sea region the age of the productive sediments beginning from more ancient rocks (Paleozoic), than in basins situated in law latitude (Mesozoic). In consequence of this the stratigraphy diapason of oil and gas bearing of the north latitude is considerably wide. The prospect of oil and gas bearing in all region is related principally with continental slopes and turbidites sediments in its. Late Jurassic and early Cretaceous reservoirs would be the aim for deep drilling sediments. Wide distribution of late Cretaceous and early Tertiary prospects reservoirs of oil and gas is quite really so far as they are bedded in the shallow horizons. Also the prospect of oil and gas bearing at the margin of the basin is related to late Cretaceous and Tertiary sediments, to deposits of fan and diapirs salt.


2021 ◽  
Vol 64 (2) ◽  
Author(s):  
Jefferson Tavares Cruz Oliveira ◽  
José Antonio Barbosa ◽  
David de Castro ◽  
Paulo Correia ◽  
José Ricardo Magalhães ◽  
...  

An investigation of Curie point depths (CPD) based on spectral analysis of airborne magnetic data was carried out in the NE Brazilian continental margin. The studied region represents a narrow hyper-extended margin with three sedimentary basins. Regional geothermal gradient and heat flow were also calculated. CPD results were integrated with interpretation of 2D deep seismic data and with estimated isostatic Moho depths. The results reveal that the narrow hyper-extended crust is 150 km wide in the southern sector and 80 km wide in the north, with a narrow ocean-continental transition (OCT) zone that varies from 50 km wide in the south sector to 30 to 20 km wide in the north. The CPD isotherm showed the strong influence of the three main continental blocks of Borborema ́s Shield in the tectonic evolution of the three marginal basins. The CPD analysis corroborated models provided by gravimetric data and successfully demonstrated the sharp control of basement compartments on the thermal properties of the marginal basins domains


2020 ◽  
Author(s):  
Kseniia Startseva ◽  
Anatoly Nikishin

<p>Based on new seismic survey, offshore drilling and geological structure of the adjacent onshore a new model of geological evolution of sedimentary basins of the East-Siberian and Chukchi seas since the Mesozoic has been constructed. The main stages of their tectonic history are highlighted: 1) forming of the foreland basin in Jurassic – Early Creatceous time; 2) synrift extension in Aptian-Albian time; 3) start of postrift subsidence in Later Cretaceous; 4) uplift and deformations at the turn of Cretaceous and Paleogene, start of forming of the thick (up to 4-6 km) clinoform complex; 5) episode of synrift extension in Middle-Later Eocene, forming of the system of multiple low-amplitude normal faults; 6) inversion deformations in Oligocene-Miocene; 7) relatively calm tectonic conditions in Neogene-Quaternary time. Boundaries of the interpreted seismic complexes corresponding to these stages has been extended to the entire Amerasia basin with regards to the ages of magnetic anomalies in the Gakkel Ridge and sea-bottom sampling on the Mendeleev Rise. Volcanic areas of the De Long Islands and the North Wrangel High has been traced on the seismic profiles toward Mendeleev Rise and Podvodnikov Basin and dated as ±125 Ma. According to the seismic interpretation, the age of the Podvodnikov and Toll basins is not older than Aptian. The reported study was funded by RFBR and NSFB, project number 18-05-70011, 18-05-00495 and 18-35-00133.</p>


1976 ◽  
Vol 13 (9) ◽  
pp. 1268-1287 ◽  
Author(s):  
William R. Dickinson

Development of Mesozoic and Cenozoic sedimentary basins in western North America was linked to the overall geodynamics of an active continental margin. The Cordilleran margin, now largely of Californian-type with a bounding transform, was Atlantic-type from late Precambrian to early Paleozoic, Japanese-type from late Paleozoic to early Mesozoic, and Andean-type from late Mesozoic to early Tertiary, when a continental-margin arc–trench system included the following tectonic elements from west to east: (a) the subduction complex at the main subduction zone; (b) forearc basins within the arc–trench gap; (c) the magmatic arc of generally andesitic volcanics and subjacent granitic plutons; (d) a backarc fold-thrust belt, commonly with an associated metamorphic infrastructure; and (e) the retroarc foreland basin adjacent to the craton. Progressive broadening of this tectonic system was achieved by tectonic accretion of oceanic elements to the edge of the continental block and by peeling of cover off rigid basement underthrust behind the arc along the edge of a zone of ductile lithosphere formed thermally beneath the arc. An initial Jurassic island arc evolved through the Cretaceous into a terrestrial Tertiary arc as subsiding forearc and retroarc basins were filled with sediment.


Solid Earth ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 2735-2771
Author(s):  
Amir Kalifi ◽  
Philippe Hervé Leloup ◽  
Philippe Sorrel ◽  
Albert Galy ◽  
François Demory ◽  
...  

Abstract. After more than a century of research, the chronology of the deformation of the external part of the western Alpine belt (France) is still controversial for the Miocene epoch. In particular, the poor dating of the foreland basin sedimentary succession hampers a comprehensive understanding of the deformation kinematics. Here we focus on the Miocene molasse deposits of the northern subalpine massifs, southern Jura, Royans, Bas-Dauphiné, Crest, and La Bresse sedimentary basins through a multidisciplinary approach to build a basin-wide tectono-stratigraphic framework. Based on sequence stratigraphy constrained by biostratigraphical, chemostratigraphical (Sr isotopes), and magnetostratigraphical data between the late Aquitanian (∼ 21 Ma) and the Tortonian (∼ 8.2 Ma), the Miocene molasse chronostratigraphy is revised with a precision of ∼ 0.5 Ma. The Miocene molasse sediments encompass four different paleogeographical domains: (i) the oriental domain outlined by depositional sequences S1a to S3 (∼ 21 to ∼ 15 Ma), (ii) the median domain characterized by sequences S2 to S5 (∼ 17.8 to ∼ 12 Ma), (iii) the occidental domain in which sequences S2a to S8 (∼ 17.8 to ∼ 8.2 Ma) were deposited, and (iv) the Bressan domain where sedimentation is restricted to sequences S6 to S8 (∼ 12 to ∼ 8.2 Ma). A structural and tectono-sedimentary study is conducted based on new field observations and the reappraisal of regional seismic profiles, thereby allowing the identification of five major faults zones (FZs). The oriental, median, and occidental paleogeographical domains are clearly separated by FZ1, FZ2, and FZ3, suggesting strong interactions between tectonics and sedimentation during the Miocene. The evolution in time and space of the paleo-geographical domains within a well-constrained structural framework reveals syntectonic deposits and a westward migration of the depocenters, allowing for proposing the succession of three deformation phases at the western Alpine front. (i) The first is a compressive phase (P1) corresponding to thrusting above the Chartreuse oriental thrust (FZ1), which was likely initiated during the Oligocene and rooted east of Belledonne. This tectonic phase generated reliefs that limited the Miocene transgression to the east. (ii) The second is a ∼ WNW–ESE-directed compressive phase (P2) lasting between 18.05 ± 0.25 Ma and ∼ 12 Ma, with thrusts rooted in the Belledonne basal thrust. Thrusts were activated from east to west: the Salève (SAL) and Gros Foug (GF) thrusts and then successively FZ2, FZ3, FZ4, and FZ5. Along two WNW–ESE balanced cross sections the amount of horizontal shortening is of ∼ 6.3 to 6.7 km, corresponding to average shortening rates of ∼ 1.2 km Myr−1 and migration of the deformation toward the west at a rate of ∼ 2.9 km Myr−1. During ∼ 6 Myr, the Miocene Sea was forced to regress rapidly westwards in response to westward migration of the active thrusts and exhumation of piggyback basins atop the fault zones. Phase P2 thus deeply shaped the Miocene paleogeo-graphical evolution of the area and appears as a prominent compressive phase at the scale of the western Alps from the Swiss molasse basin to the Rhodano–Provencal one. (iii) The third is a ∼ 300 m phase of uplift in the Bas-Dauphiné (P3) of probable Tortonian age (∼ 10 Ma), which would have induced southward sea retreat and been coeval with the folding of the Jura in the north and possibly with back-thrusting east of the Chartreuse massif.


1989 ◽  
Vol 126 (5) ◽  
pp. 499-513 ◽  
Author(s):  
Rodney A. Gayer ◽  
Reinhard O. Greiling

AbstractStructural analysis of the Lower Allochthon in the north-central Scandinavian Caledonides has allowed the construction of restorable cross-sections consistent with the development of a foreland-propagating linked thrust system. The internal geometry of an antiformal stack, the Njakafjäll duplex, within the Lower Allochthon demonstrates tectonic shortening of c. 50% and suggests an overall predeformational width for the Lower Allochthon in this area of at least c. 130 km, and possibly considerably greater if the buried trailing edge of the Lower Allochthon lies in a comparable position to that farther south in Tröndelag. These results, combined with a stratigraphic analysis of the imbricates within the Lower Allochthon and of the adjoining Autochthon and Middle Allochthon, indicate the development, from Proterozoic through Cambrian times, of two sedimentary basins on the c. 200 km wide continental margin of Baltica bordering the Iapetus Ocean. The basins were separated by a region of basement relief, the Børgefjell domain, above which a reduced sequence of Vendian to Cambrian rocks accumulated. This Børgefjell basement high, and the similar Njakafjäll basement high to the east, subsequently became the sites of antiformal stack development. It is argued that the frequent incorporation of basement into the thrust sheets, together with the thin sedimentary fill of these basins, compared with the much greater fill in basins to the south in Jämtland and to the north of Finnmark, implies major palaeogeographic changes along the Baltoscandian margin, possibly related to early rift geometries. The apparent lack of subsequent foreland basin development in north-central Scandinavia compared with areas to the south may indicate a deeper level of thrust detachment beneath the Middle Allochthon to the north, such that any foreland basin sediments have been removed in the hangingwall and subsequently eroded. An alternative possibility is a primary absence of foreland basin development that may relate to a differing response to thrust loading by continental lithosphere which had been variably thinned during the earlier rift regime.


Sign in / Sign up

Export Citation Format

Share Document