Limitations to wheat starch digestion in growing broiler chickens: a brief review

2011 ◽  
Vol 51 (7) ◽  
pp. 583 ◽  
Author(s):  
Birger Svihus

Starch digestibility may be suboptimal in broilers fed pelleted wheat-based diets. In the present review, the digestion and absorption process related to starch is presented, followed by a discussion of the effect of wheat characteristics and bird-related effects. Enzyme secretion or glucose absorption and metabolism have not been shown to be limiting factors. Suboptimal starch digestibility is primarily observed when a large proportion of wheat is included in the diet, and appears to be partly associated with characteristics of the wheat such as hardness and cell wall structure, which cause starch granules to remain entrapped in the protein matrix and the cell wall of the endosperm or aleurone layer. There are indications that low starch digestibility is negatively correlated with feed intake, and that such a feed over-consumption is linked to an under-developed gizzard.

2020 ◽  
Vol 47 (9) ◽  
pp. 840
Author(s):  
Xiaoquan Gao ◽  
Ruifeng Ying ◽  
Dan Zhao ◽  
Jiewei Zhu

Wheat grain from 12 different regions in China was used to study variations in the cell wall structure and chemical composition based on geography. The mobility and migration rate of water in wheat grain during moisture absorption and drying were determined under different relative humidity conditions. Depending on the geography, variations were noted in the thickness and component content of the wheat grain cell wall. Cell wall thickness was positively correlated with the total arabinoxylan (TAX) content. Cell wall thickness and TAX content of the aleurone layer were positively correlated with altitude and negatively correlated with longitude. The water migration rate decreased with the increase of cell wall thickness and TAX content. Nuclear magnetic resonance (NMR) results revealed that grains with thick aleurone cell wall showed increased molecular mobility of water. These findings lay the foundation for further study of water regulation in wheat cell wall.


1987 ◽  
Vol 38 (3) ◽  
pp. 639 ◽  
Author(s):  
AM Rogel ◽  
EF Annison ◽  
WL Bryden ◽  
D Balnave

Apparent metabolizable energy (AME) of wheat for 6-week-old male broiler chickens was highly correlated with starch digestibility when pelleted diets containing 820 g wheat per kg were fed. Starch isolated from low-AME wheats was hydrolysed in vitro by chicken pancreatic amylase as rapidly as starch from high-AME wheats. When included in semi-purified diets the isolated starches were completely digestible. Digestibility of starch was poor and highly variable when 3-week-old chickens were fed unpelleted wheat diets, but improved with age. Oat hulls improved the digestibility of starch in young chickens fed unpelleted diets.


2021 ◽  
Author(s):  
Anna Fiorillo ◽  
Vincenzo Fogliano ◽  
Mauro Marra ◽  
Lorenzo Camoni

Potatoes are one of the main sources of carbohydrates in human diet, however they have a high glycaemic index (GI). Hence, developing new agricultural and industrial strategies to produce low...


2016 ◽  
Vol 56 (5) ◽  
pp. 797 ◽  
Author(s):  
Ha H. Truong ◽  
Sonia Y. Liu ◽  
Peter H. Selle

Starch is the chief dietary energy source for chicken-meat production, the majority of which is derived from the grain basis of diets for broiler chickens. The utilisation of starch from maize is of a high order in terms of ileal starch digestibility coefficients but this is not necessarily the case with wheat or sorghum. This may stem from the fact that maize essentially lacks the soluble non-starch polysaccharides in wheat and ‘non-tannin’ phenolic compounds found in sorghum. Numerous factors may influence starch digestibility with emphasis placed on starch–protein interactions as starch granules are located in the prolamin protein matrixes of grain endosperm. This close proximity facilitates any physical and chemical interactions and in this connection particular attention has been paid to kafirin, the dominant protein fraction in sorghum. Nevertheless, despite their apparent importance, the precise nature of starch–protein interactions has not been well defined. Exogenous phytases are routinely included in broiler diets primarily to liberate phytate-bound phosphorus; however, phytate may impede starch digestion and may retard glucose absorption. Additional feed additives, including non-starch polysaccharide-degrading enzymes, other exogenous enzymes and reducing agents may have the capacity to influence starch utilisation. Nevertheless, ileal and total tract starch digestibility coefficients are static parameters and overlook the digestive dynamics of starch, which is inappropriate given the possibility that slowly digestible starch enhances energy utilisation and feed conversion efficiency. However, if the slowly digestible starch concept is valid, the underlying mechanisms have not been fully elucidated. Consideration is given to the suggestion that slowly digestible starch ameliorates the catabolism of amino acids to provide energy to the gut mucosa by increasing the provision of glucose to posterior small intestinal segments. There is the prospect that whole grain feeding provides slowly digestible starch in addition to generating heavier relative gizzard weights. The digestive dynamics of starch and protein are inter-related and the digestion of starch and absorption of glucose should not be considered in isolation from protein digestion and amino acid absorption in the quest to improve the performance of broiler chickens. The foremost factor influencing starch utilisation in chicken-meat production may be the interaction between starch and protein digestive dynamics.


2019 ◽  
Author(s):  
Sylvia L. Rivera ◽  
Akbar Espaillat ◽  
Arjun K. Aditham ◽  
Peyton Shieh ◽  
Chris Muriel-Mundo ◽  
...  

Transpeptidation reinforces the structure of cell wall peptidoglycan, an extracellular heteropolymer that protects bacteria from osmotic lysis. The clinical success of transpeptidase-inhibiting β-lactam antibiotics illustrates the essentiality of these cross-linkages for cell wall integrity, but the presence of multiple, seemingly redundant transpeptidases in many bacterial species makes it challenging to determine cross-link function precisely. Here we present a technique to covalently link peptide strands by chemical rather than enzymatic reaction. We employ bio-compatible click chemistry to induce triazole formation between azido- and alkynyl-D-alanine residues that are metabolically installed in the cell walls of Gram-positive and Gram-negative bacteria. Synthetic triazole cross-links can be visualized by substituting azido-D-alanine with azidocoumarin-D-alanine, an amino acid derivative that undergoes fluorescent enhancement upon reaction with terminal alkynes. Cell wall stapling protects the model bacterium Escherichia coli from β-lactam treatment. Chemical control of cell wall structure in live bacteria can provide functional insights that are orthogonal to those obtained by genetics.<br>


2021 ◽  
Vol 06 ◽  
Author(s):  
Ayekpam Chandralekha Devi ◽  
G. K. Hamsavi ◽  
Simran Sahota ◽  
Rochak Mittal ◽  
Hrishikesh A. Tavanandi ◽  
...  

Abstract: Algae (both micro and macro) have gained huge attention in the recent past for their high commercial value products. They are the source of various biomolecules of commercial applications ranging from nutraceuticals to fuels. Phycobiliproteins are one such high value low volume compounds which are mainly obtained from micro and macro algae. In order to tap the bioresource, a significant amount of work has been carried out for large scale production of algal biomass. However, work on downstream processing aspects of phycobiliproteins (PBPs) from algae is scarce, especially in case of macroalgae. There are several difficulties in cell wall disruption of both micro and macro algae because of their cell wall structure and compositions. At the same time, there are several challenges in the purification of phycobiliproteins. The current review article focuses on the recent developments in downstream processing of phycobiliproteins (mainly phycocyanins and phycoerythrins) from micro and macroalgae. The current status, the recent advancements and potential technologies (that are under development) are summarised in this review article besides providing future directions for the present research area.


2021 ◽  
Vol 9 (6) ◽  
pp. 1323
Author(s):  
Etai Boichis ◽  
Nadejda Sigal ◽  
Ilya Borovok ◽  
Anat A. Herskovits

Infection of mammalian cells by Listeria monocytogenes (Lm) was shown to be facilitated by its phage elements. In a search for additional phage remnants that play a role in Lm’s lifecycle, we identified a conserved locus containing two XRE regulators and a pair of genes encoding a secreted metzincin protease and a lipoprotein structurally similar to a TIMP-family metzincin inhibitor. We found that the XRE regulators act as a classic CI/Cro regulatory switch that regulates the expression of the metzincin and TIMP-like genes under intracellular growth conditions. We established that when these genes are expressed, their products alter Lm morphology and increase its sensitivity to phage mediated lysis, thereby enhancing virion release. Expression of these proteins also sensitized the bacteria to cell wall targeting compounds, implying that they modulate the cell wall structure. Our data indicate that these effects are mediated by the cleavage of the TIMP-like protein by the metzincin, and its subsequent release to the extracellular milieu. While the importance of this locus to Lm pathogenicity remains unclear, the observation that this phage-associated protein pair act upon the bacterial cell wall may hold promise in the field of antibiotic potentiation to combat antibiotic resistant bacterial pathogens.


Sign in / Sign up

Export Citation Format

Share Document