On-farm greenhouse gas emissions and water use: case studies in the Queensland beef industry

2011 ◽  
Vol 51 (8) ◽  
pp. 667 ◽  
Author(s):  
Sandra Eady ◽  
James Viner ◽  
Justin MacDonnell

In response to climate change, research is being undertaken to understand the on-farm greenhouse gas emissions and water use for agricultural systems and investigate options farmers may have for mitigating or offsetting emissions. In the present study, a life cycle assessment framework is used to determine on-farm GHG emissions and water use, and the overall ‘cradle-to-farm gate’ GHG emissions and water use attributed to beef production. The total on-farm emissions for the two properties were 2984 t CO2-e/year (or 1.93 t CO2-e/livestock unit) for the 634-cow enterprise turning off weaner cattle at Gympie and 5725 t CO2-e/year (or 1.70 t CO2-e/livestock unit) for the 720-cow enterprise turning off finished steers in the Arcadia Valley. The on-farm emissions are largely attributable to enteric methane emissions from the beef herd. The overall ‘cradle-to-farm gate’ GHG emissions associated with enterprise products were 3145 t CO2-e/year at Gympie and 7253 t CO2-e/year in the Arcadia Valley, with the additional emissions coming from off-farm inputs (fuel for farm vehicles and earth-moving equipment, electricity, supplementary feed, agricultural chemicals, farm services) and additionally, for the Arcadia Valley enterprise, from purchased store steers. The carbon footprint of beef products at the farm gate ranged from 17.5 to 22.9 kg CO2-e/kg liveweight at Gympie, where wearers are the primary product, and from 11.6 to 15.5 kg CO2-e/kg liveweight in the Arcadia Valley, where finished steers are the primary product. Green water use ranged from 7400 to 12 700 L/kg liveweight depending on class of livestock, with on-farm blue water use of 51–96 L/kg liveweight and off-farm blue water use of 0.1–59 L/kg liveweight. The ability to offset on-farm GHG emissions through reforestation varied between the two locations, with predicted biosequestration rates of 19.3–34.7 t CO2-e/ha per year at Gympie (rainfall 1200 mm/year) from eucalypt plantation and 1.5–9.8 t CO2-e/ha per year in the Arcadia Valley (rainfall 600 mm/year) through reforestation from a combination of brigalow regrowth, leucaena and environmental eucalypt plantings. The area that would need to be reforested to offset on-farm emissions (over a 30-year time horizon) would be 86–155 ha at Gympie (7–13% of the holding) and 629–4108 ha in the Arcadia Valley (9–60%). If carbon sequestration could be achieved at the higher end of the rates nominated, a significant proportion of on-farm emissions could be offset by sequestration in timber, with minimal impact on beef production. However, at the lower end of the forest sequestration range, the required level of land-use change would reduce the carrying capacity, and hence beef production, especially at the Arcadia Valley site.

2016 ◽  
Vol 56 (5) ◽  
pp. 882 ◽  
Author(s):  
Stephen Wiedemann ◽  
Eugene McGahan ◽  
Caoilinn Murphy ◽  
Mingjia Yan

Resource use and environmental impacts are important factors relating to the sustainability of beef production in Australia. This study used life cycle assessment to investigate impacts from grass-finished beef production in eastern Australia to the farm gate, reporting impacts per kilogram of liveweight (LW) produced. Mean fossil fuel energy demand was found to vary from 5.6 to 8.4 MJ/kg LW, mean estimated fresh water consumption from 117.9 to 332.4 L/kg LW and crop land occupation from 0.3 to 6.4 m2/kg LW. Mean greenhouse gas emissions ranged from 10.6 to 12.4 kg CO2-e/kg LW (excluding land use and direct land-use change emissions) and were not significantly different (P > 0.05) for export or domestic market classes. Enteric methane was the largest contributor to greenhouse gas emissions, and multiple linear regression analysis revealed that weaning rate and average daily gain explained 80% of the variability in supply chain greenhouse gas emissions. Fresh water consumption was found to vary significantly among individual farms depending on climate, farm water supply efficiency and the use of irrigation. The impact of water use was measured using the stress-weighted water use indicator, and ranged from 8.4 to 104.2 L H2O-e/kg LW. The stress-weighted water use was influenced more by regional water stress than the volume of fresh water consumption. Land occupation was assessed with disaggregation of crop land, arable pasture land and non-arable land, which revealed that the majority of beef production utilised non-arable land that is unsuitable for most alternative food production systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


2013 ◽  
Vol 19 (1) ◽  
pp. 69-78 ◽  
Author(s):  
S. Richard O. Williams ◽  
Peter D. Fisher ◽  
Tony Berrisford ◽  
Peter J. Moate ◽  
Keith Reynard

2021 ◽  
Author(s):  
Ain Kull ◽  
Iuliia Burdun ◽  
Gert Veber ◽  
Oleksandr Karasov ◽  
Martin Maddison ◽  
...  

<p>Besides water table depth, soil temperature is one of the main drivers of greenhouse gas (GHG) emissions in intact and managed peatlands. In this work, we evaluate the performance of remotely sensed land surface temperature (LST) as a proxy of greenhouse gas emissions in intact, drained and extracted peatlands. For this, we used chamber-measured carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) data from seven peatlands in Estonia collected during vegetation season in 2017–2020. Additionally, we used temperature and water table depth data measured in situ. We studied relationships between CO<sub>2</sub>, CH<sub>4</sub>, in-situ parameters and remotely sensed LST from Landsat 7 and 8, and MODIS Terra. Results of our study suggest that LST has stronger relationships with surface and soil temperature as well as with ecosystem respiration (R<sub>eco</sub>) over drained and extracted sites than over intact ones. Over the extracted cites the correlation between R<sub>eco</sub> CO<sub>2</sub> and LST is 0.7, and over the drained sites correlation is 0.5. In natural sites, we revealed a moderate positive relationship between LST and CO<sub>2</sub> emitted in hollows (correlation is 0.6) while it is weak in hummocks (correlation is 0.3). Our study contributes to the better understanding of relationships between greenhouse gas emissions and their remotely sensed proxies over peatlands with different management status and enables better spatial assessment of GHG emissions in drainage affected northern temperate peatlands.</p>


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5664
Author(s):  
Wenjing Wei ◽  
Peter B. Samuelsson ◽  
Anders Tilliander ◽  
Rutger Gyllenram ◽  
Pär G. Jönsson

The primary energy consumption and greenhouse gas emissions from nickel smelting products have been assessed through case studies using a process model based on mass and energy balance. The required primary energy for producing nickel metal, nickel oxide, ferronickel, and nickel pig iron is 174 GJ/t alloy (174 GJ/t contained Ni), 369 GJ/t alloy (485 GJ/t contained Ni), 110 GJ/t alloy (309 GJ/t contained Ni), and 60 GJ/t alloy (598 GJ/t contained Ni), respectively. Furthermore, the associated GHG emissions are 14 tCO2-eq/t alloy (14 tCO2-eq/t contained Ni), 30 t CO2-eq/t alloy (40 t CO2-eq/t contained Ni), 6 t CO2-eq/t alloy (18 t CO2-eq/t contained Ni), and 7 t CO2-eq/t alloy (69 t CO2-eq/t contained Ni). A possible carbon emission reduction can be observed by comparing ore type, ore grade, and electricity source, as well as allocation strategy. The suggested process model overcomes the limitation of a conventional life cycle assessment study which considers the process as a ‘black box’ and allows for an identification of further possibilities to implement sustainable nickel production.


2020 ◽  
Author(s):  
Theresa Klausner ◽  
Mariano Mertens ◽  
Heidi Huntrieser ◽  
Michal Galkowski ◽  
Gerrit Kuhlmann ◽  
...  

<p>Urban areas are recognised as a significant source of greenhouse gas emissions (GHG), such as carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>). The total amount of urban GHG emissions, especially for CH<sub>4</sub>, however, is not well quantified. Here we report on airborne in situ measurements using a Picarro G1301-m analyser aboard the DLR Cessna Grand Caravan to study GHG emissions downwind of the German capital city Berlin. In total, five aircraft-based mass balance experiments were conducted in July 2018 within the Urban Climate Under Change [UC]<sup>2</sup> project. The detection and isolation of the Berlin plume was often challenging because of comparatively small GHG signals above variable atmospheric background concentrations. However, on July 20<sup>th</sup> enhancements of up to 4 ppm CO<sub>2</sub> and 21 ppb CH<sub>4</sub> were observed over a horizontal extent of roughly 45 to 65 km downwind of Berlin. These enhanced mixing ratios are clearly distinguishable from the background and can partly be assigned to city emissions. The estimated CO<sub>2</sub> emission flux of 1.39 ± 0.75 t s<sup>-1 </sup>is in agreement with current inventories, while the CH<sub>4</sub> emission flux of 5.20 ± 1.61 kg s<sup>-1</sup> is almost two times larger than the highest reported value in the inventories. We localized the source area with HYSPLIT trajectory calculations and the high resolution numerical model MECO(n) (down to ~1 km), and investigated the contribution from sewage-treatment plants and waste deposition to CH<sub>4</sub>, which are treated differently by the emission inventories. Our work highlights the importance of a) strong CH<sub>4</sub> sources in the surroundings of Berlin and b) a detailed knowledge of GHG inflow mixing ratios to suitably estimate emission rates.</p>


Author(s):  
Natasha Doyle ◽  
◽  
Philiswa Mbandlwa ◽  
Sinead Leahy ◽  
Graeme Attwood ◽  
...  

This chapter aims to outline the strategy of using feed supplements for the reduction of greenhouse gas emissions (GHG) in ruminants, including methane (CH4), carbon dioxide and nitrous oxide, given that feed intake is an important variable in predicting these emissions. Focus will be given to direct-fed microbials, a term reserved for live microbes which can be supplemented to feed to elicit a beneficial response. The viability of such methods will also be analysed for their use in large scale on-farm operations.


2020 ◽  
Vol 63 (4) ◽  
pp. 771-787
Author(s):  
Qianjing Jiang ◽  
Zhiming Qi ◽  
Chandra A. Madramootoo ◽  
Ward Smith ◽  
Naeem A. Abbasi ◽  
...  

HighlightsRZWQM2 was compared with DNDC to predict greenhouse gas emissions.RZWQM2 was applied to simulate the greenhouse gas emissions under manure application.RZWQM2 performed better than DNDC in simulating soil water content and CO2 emissions.Abstract. N management has the potential to mitigate greenhouse gas (GHG) emissions. Process-based models are promising tools for evaluating and developing management practices that may optimize sustainability goals as well as promote crop productivity. In this study, the GHG emission component of the Root Zone Water Quality Model (RZWQM2) was tested under two different types of N management and subsequently compared with the Denitrification-Decomposition (DNDC) model using measured data from a subsurface-drained field with a corn-soybean rotation in southern Ontario, Canada. Field-measured data included N2O and CO2 fluxes, soil temperature, and soil moisture content from a four-year field experiment (2012 to 2015). The experiment was composed of two N treatments: inorganic fertilizer (IF), and inorganic fertilizer combined with solid cattle manure (SCM). Both models were calibrated using the data from IF and validated with SCM. Statistical results indicated that both models predicted well the soil temperature, but RZWQM2 performed better than DNDC in simulating soil water content (SWC) because DNDC lacked a heterogeneous soil profile, had shallow simulation depth, and lacked crop root density functions. Both RZWQM2 and DNDC predicted the cumulative N2O and CO2 emissions within 15% error under all treatments, while the timing of daily CO2 emissions was more accurately predicted by RZWQM2 (RMSE = 0.43 to 0.54) than by DNDC (RMSE = 0.60 to 0.67). Modeling results for N management effects on GHG emissions showed consistency with the field measurements, indicating higher CO2 emissions under SCM than IF, higher N2O emissions under IF in corn years, but lower N2O emissions in soybean years. Overall, RZWQM2 required more experienced and intensive calibration and validation, but it provided more accurate predictions of soil hydrology and better timing of CO2 emissions than DNDC. Keywords: CO2 emission, Corn-soybean rotation, Inorganic fertilization, Manure application, N2O emission, Process-based modeling.


2020 ◽  
Vol 10 (15) ◽  
pp. 5056
Author(s):  
Cevat Yaman

This study investigated the biomedical waste collection, transportation, and treatment activities in the city of Kocaeli, Turkey. As an alternative to incineration technology, a steam autoclave was used to sterilize the biomedical waste. Information regarding the collection, transportation, treatment and associated greenhouse gas emissions (GHG) were also investigated. Prior to sterilization, biological indicator vials containing Bacillus stearothermophilus were placed in the center of the load to ensure that the pathogens were destroyed. GHG emissions were calculated based on the fuel consumed by the biomedical waste collection vehicles and the electricity/natural gas used at the sterilization plant. Results of this work revealed that the total biomedical waste generated per year increased from 1362 tons in 2009 to 2375 tons in 2019. The amount of biomedical waste generated per hospital bed was determined as 1.19 kg.bed−1.day−1. Results show that for efficient sterilization of biomedical wastes, the steam treatment system process should be operated at a contact time of 45 min, a temperature of 150 °C, and at a steam pressure of 5 bar. Biological indicator tests showed that the number of living Bacillus stearothermophilus decreased significantly, with removal rates greater than 6log10. Finally, it was determined that the biomedical waste management activities generated a total of GHG emissions of 5573 ton CO2 equivalency (tCO2-e) from 2009 to 2019. Furthermore, the average global warming factor (GWF) was calculated to be 0.269 tCO2-e per ton of biomedical waste generated. This study showed that the sterilization process is very effective in destroying the pathogens and the management of biomedical waste generates considerable amounts of GHG emissions.


Sign in / Sign up

Export Citation Format

Share Document