Quantifying effects of grassland management on enteric methane emission

2016 ◽  
Vol 56 (3) ◽  
pp. 409 ◽  
Author(s):  
A. Bannink ◽  
D. Warner ◽  
B. Hatew ◽  
J. L. Ellis ◽  
J. Dijkstra

Data on the effect of grassland management on the nutritional characteristics of fresh and conserved grass, and on enteric methane (CH4) emission in dairy cattle, are sparse. In the present study, an extant mechanistic model of enteric fermentation was evaluated against observations on the effect of grassland management on CH4 emission in three trials conducted in climate-controlled respiration chambers. Treatments were nitrogen fertilisation rate, stage of maturity of grass and level of feed intake, and mean data of a total of 18 treatments were used (4 grass herbage treatments and 14 grass silage treatments). There was a wide range of observed organic matter (OM) digestibility (from 68% to 84%) and CH4 emission intensity (from 5.6% to 7.3% of gross energy intake; from 27.4 to 36.9 g CH4/kg digested OM; from 19.7 to 24.6 g CH4/kg dry matter) among treatment means. The model predicted crude protein, fibre and OM digestibility with reasonable accuracy (root of mean square prediction errors as % of observed mean, RMSPE, 6.8%, 7.5% and 3.9%, respectively). For grass silages only, the model-predicted CH4 correlated well (Pearson correlation coefficient 0.73) with the observed CH4 (which varied from 5.7% to 7.2% of gross energy intake), after predicted CH4 was corrected for nitrate consumed with grass silage, acting as hydrogen sink in the rumen. After nitrate correction, there was a systematic under-prediction of 18%, which reduced to 9% when correcting the erroneously predicted rumen volatile fatty acid (VFA) profile (RMSPE 15%). Although a small over-prediction of 3% was obtained for the grass herbages, this increased to 14% when correcting VFA profile. The model predictions showed a systematic difference in CH4 emission from grass herbages and grass silages, which was not supported by the observed data. This is possibly related to the very high content of soluble carbohydrates in grass herbage (an extra 170 g/kg dry matter compared with grass silages) and an erroneous prediction of its fate and contribution to CH4 in the rumen. Erroneous prediction of the VFA profile is likely to be due to different types of diets included in the empirical database used to parameterise VFA yield in the model from those evaluated here. Model representations of feed digestion and VFA profile are key elements to predict enteric CH4 accurately, and with further evaluations, the latter aspect should be emphasised in particular.

2018 ◽  
Vol 58 (6) ◽  
pp. 1049 ◽  
Author(s):  
D. Vyas ◽  
S. M. McGinn ◽  
S. M. Duval ◽  
M. K. Kindermann ◽  
K. A. Beauchemin

The objective of the present study was to determine the dose response of the methane (CH4) inhibitor 3-nitrooxypropanol (NOP) on enteric CH4 production and dry matter intake (DMI) for beef cattle fed a high-forage or high-grain diet. Fifteen crossbred yearling steers were used in two consecutive studies (high-forage backgrounding, high-grain finishing), each designed as an incomplete block with two 28-day periods with a 7-day washout in between and treatments corresponding to six doses of NOP (0 (Control), 50, 75, 100, 150, 200 mg/kg DM). The NOP was provided in the ration daily with the dose increased gradually over the first 10 days of each period. No treatment effects were observed on overall DMI or DMI of cattle when they were in the chambers either for the high-forage (P ≥ 0.54) or high-grain (P ≥ 0.26) diet. With the high-forage diet, NOP supplementation lowered total CH4 emissions (g/day) (P = 0.05), with the response at 200 mg NOP/kg DM different from Control (P < 0.05). Similarly, CH4 emissions corrected for DMI (g/kg DMI) and as a percentage of gross energy intake were linearly reduced in the high-forage diet with supplemental NOP (P < 0.01) and responses observed at 100, 150 and 200 mg NOP/kg DM differed from Control (P < 0.05). For the high-grain diet, total CH4 emissions decreased with incremental increases in the concentration of NOP supplemented (P = 0.04) and responses observed at 150 and 200 mg/kg DM differed from Control. Similarly, linear responses were observed with CH4 emissions corrected for DMI (P = 0.04) and gross energy intake (P = 0.02), with 100–200 mg NOP/kg DM differing from Control. Overall, results from the present study demonstrated that for beef cattle fed high-forage and high-grain diets, supplementation of 100–200 mg NOP/kg DM lowered enteric CH4 emissions without inducing any negative effects on DMI.


1981 ◽  
Vol 61 (1) ◽  
pp. 175-180
Author(s):  
PAUL FLIPOT ◽  
GHISLAIN PELLETIER ◽  
J.-C. ST-PIERRE ◽  
J. E. COMEAU

Chemical analysis, in vivo digestibility and sheep performance were used to determine the nutritive value of unpacked or packed, Sylade-treated or untreated grass silages. Materials were ensiled in stack silos. The pH was lower in packed grass silage than in unpacked silage. Sylade treatment of the packed silage reduced protein degradation and increased digestibility of dry matter, gross energy, acid detergent fiber, neutral detergent fiber, nitrogen and energy retained as a percent of a total energy intake. However, the energy intake and nitrogen balance were not affected by treatments. Growth and feed efficiency were not improved in Sylade-treated silage. Animal performances were similar under all treatments. Feed intake was slightly increased for the lambs fed unpacked silage.


1992 ◽  
Vol 55 (3) ◽  
pp. 389-396 ◽  
Author(s):  
R. Sanderson ◽  
C. Thomas ◽  
A. B. McAllan

AbstractSeventy-two, 4-month-old, British Friesian steers were used to investigate the effects of feeding a supplement of fish meal on the voluntary intake and live-weight gain by young growing cattle given a well preserved ryegrass silage. The silage was offered either alone or mixed with 50,100 or 150 g fish meal per kg silage dry matter (DM) and the diets were offered either ad libitum or intakes were restricted to 16, 19 or 22 g dietary DM per kg live weight (LW). Intakes were recorded daily, LW weekly and in vivo apparent digestibility over one 7-day period during the 132-day trial.For animals fed ad libitum, the absolute intake of dietary DM increased linearly with an increase in the level of fish-meal supplementation such that intake when the highest level of fish meal was given was significantly higher (P < 0·01) than when silage was given alone. However, DM intake per unit LW (approx. 24 g DM per kg LW) was not affected significantly (P > 0·05).Inclusion of fish meal in the diet did not affect the apparent digestibility of dietary DM, organic matter, acid-detergent or neutral-detergent fibre (NDF) although there was a trend for slightly higher (P > 0·05) gross energy apparent digestibility when fish meal was given. Increasing the level of feeding reduced NDF digestibility. The coefficients measured at the 22 g and ad libitum levels of intake were lower (P < 0·01 and P < 0·05 respectively) than that measured at the 16 g DM per kg LW level.Animals given silage alone to appetite achieved LW gains of 0·6 kg/day. LW gains increased linearly with increasing level of feeding (P < 0·001) and increasing level offish-meal supplementation (P < 0·001).


2018 ◽  
Vol 58 (3) ◽  
pp. 517 ◽  
Author(s):  
A. F. Ribeiro ◽  
J. D. Messana ◽  
A. José Neto ◽  
J. F. Lage ◽  
G. Fiorentini ◽  
...  

Forty young Nellore bulls were used to determine the effects of different sources of forage in concentrate-rich diets containing crude glycerine on feed intake, performance, and enteric methane emissions. Ten animals (397 ± 34 kg and 20 ± 2 months of age) were slaughtered to estimate the initial carcass weights, and the remaining 30 animals (417 ± 24.7) were randomly assigned to three treatments with 10 replicates. The treatments consisted of three different sources of forage [NDF from forage (fNDF) was fixed 15% of dry matter]; corn silage, sugarcane, and sugarcane bagasse; in diets rich in concentrates with 10% dry matter crude glycerine. There were no differences in the intake of dry matter, organic matter, crude protein, neutral detergent fibre, gross energy, or metabolisable energy. No effects of the type of forage were observed on performance or enteric methane emissions. These results suggest that alternatives to corn silage that have high fibre content, such as sugarcane and sugarcane bagasse, do not significantly affect the intake, performance, or enteric methane emissions of young Nellore bulls.


2021 ◽  
Vol 76 (1) ◽  
pp. 97-116
Author(s):  
Roman Molas ◽  
Halina Borkowska ◽  
Barbara Sawicka

Next-generation biomass feedstocks are needed to optimize sustainability in a wide range of soils and climates. Species that has been recently noticed in Europe is Virginia fanpetals (Sida hermaphrodita L. Rusby). A critical question with research of this species is its field propagation. A long-term (2003–2012), field experiment was conducted to determine the impact of propagation method on yields and productivity this species. The hypothesis was higher yields of S. hermaphrodita biomass from vegetative propagations than from generative propagations, also over the long term. On average, from first 10 years of lifespan of Virginia fanpetals (2003–2012), biomass dry matter (DM) yields were significantly higher by vegetative propagation (16.8 Mg ha–1) as for generative (10.9 Mg ha–1). The average gross energy yield obtained by the vegetative propagation reached 304 GJ ha–1 while by the generative propagation was 196 GJ ha–1. The determined heat of combustion reached 18.1 GJ Mg–1 DM, the ash content was 28 g kg–1, and the nitrogen (N), sulphur (S), and chlorine (Cl) contents were 1.9 g kg–1, 0.52 g kg–1 and 0.23 g kg–1, respectively, regardless of propagation methods.


2015 ◽  
Vol 67 (3) ◽  
pp. 790-800 ◽  
Author(s):  
F.S. Machado ◽  
N.M. Rodríguez ◽  
L.C. Gonçalves ◽  
J.A.S. Rodrigues ◽  
M.N. Ribas ◽  
...  

Energy partitioning and methane production by sheep fed silages of three commercially available sorghum hybrids (BRS 610, BR 700 and BRS 655) harvested at three maturation stages (milk, soft dough and floury) were evaluated in open circuit respiration chambers. A complete randomized design was used in a 3 × 3 (hybrids × maturity stages) factorial arrangement, and the means were compared by the Student-Newman-Keuls (SNK) test (P<0.05). The intake of dry matter, digestible dry matter, gross energy, digestible energy and metabolizable energy were not affected by maturation stage, but were influenced by hybrid. The net energy intake was influenced by maturity and sorghum genetics. The fecal output represented the main source of energy loss, as percentage of gross energy intake (48% to 52%), followed by heat increment (10% to 19%), methane emissions (4% to 6%) and urine (1% to 2%). There were no differences (P>0.10) among the treatments for the apparent digestibility of gross energy and metabolizability (qm). An interaction (P<0.05) between sorghum hybrid and maturation stages was observed for the efficiency of metabolizable energy utilization for maintenance (km), which ranged between 0.53 and 0.78. No differences (P>0.10) among treatments occurred in the daily methane production. There is substantial genetic diversity within sorghum species, determining different nutritional values. Sorghum genetics and maturity at harvest should not be an opportunity to reduce the contribution of agriculture to methane emissions.


2002 ◽  
Vol 74 (3) ◽  
pp. 529-537 ◽  
Author(s):  
D. A. Kenny ◽  
M. P. Boland ◽  
M. G. Diskin ◽  
J. M. Sreenan

AbstractHigh intakes of dietary protein, particularly rumen degradable protein (RDP), lead to elevations in systemic concentrations of ammonia and (or) urea and these may be increased further if associated with inadequate fermentable energy intake. High systemic concentrations of ammonia and urea have been associated with reduced reproductive performance in cattle. The objective of this study was to examine the effect of RDP and fermentable energy intake on a range of blood metabolites and on embryo survival in heifers. Oestrous synchronized, nulliparous beef heifers (no. = 162) were randomly assigned in a 2 ✕ 2 factorial designed experiment to two levels of RDP and two levels of fermentable energy. Grass silage-based diets were supplemented with either 0 (0U) or 240 (240U) g dietary urea (460 g/kg N) and these in turn with either 0 (0P) or 3 (3P) kg dry matter of molassed sugar-beet pulp pellets (MSBP) per day. The four treatments were, therefore, (1) 0U + 0P (no. = 43), (2) 0U + 3P (no. = 44), (3) 240U + 0P (no. = 40) (4) 240U + 3P (no. = 35), respectively. Systemic concentrations of ammonia, urea, insulin, glucose and progesterone were measured. Heifers were given artificial insemination (AI) and embryo survival measured by ultrasonography at 30 and again at 40 days after AI. Systemic ammonia and urea were elevated (P < 0·001) in the animals given the high RDP diets. Supplementation with MSBP reduced systemic urea in the heifers on both high and low RDP diets. Plasma ammonia concentrations were not affected by MSBP supplementation (P > 0·05). Plasma glucose was not affected by urea or MSBP treatment (P > 0·05) but was affected by day and time of sampling (P > 0·05). Plasma concentration of insulin was not affected by urea or MSBP supplementation or by day or time of sampling (P > 0·05). Plasma concentration of progesterone was not affected by diet or time of sampling (P > 0·05). The overall embryo survival rate was 62% and was not affected by dietary urea or fermentable carbohydrate or by systemic concentrations of ammonia, urea, glucose, insulin or progesterone (P > 0·05).


1980 ◽  
Vol 95 (1) ◽  
pp. 83-100 ◽  
Author(s):  
D. Reid

SummaryThe results are reported for an experiment in which nitrogen rates from 0 to 672 kg/ ha and potassium rates from 0 to 558 kg/ha were applied annually on an S. 24 perennial ryegrass sward. At each of the five crops cut annually the yields of herbage dry matter and crude protein, and the potassium content of the herbage dry matter were determined. The potassium content of the soil was also measured annually. Models relating each of these variates to the nitrogen and potassium rates were derived, and their validity is demonstrated with reference to the results from earlier experiments. The problems associated with determining the correct rate of potassium fertilizer to apply on swards receiving given rates of nitrogen fertilizer are discussed using the models to predict the effects of different nitrogen-potassium combinations. In order to relate the implications of this discussion more closely to practical grassland management, economic as well as biological criteria are taken into account by incorporating cost factors in the models.


2002 ◽  
Vol 53 (7) ◽  
pp. 737 ◽  
Author(s):  
C. R. Stockdale ◽  
J. R. Roche

This review considers the current literature on the energy and protein nutrition of dry cows and its subsequent impact on early lactation performance. Energy intake close to calving appears to be critical to events that occur post-partum, such that a key objective of dry cow feeding should be to maximise or maintain feed intake immediately prior to calving, or at least to minimise the decline in intake. Although a decline in dry matter intake seems to be a normal adaptive event in peri-parturient ruminants, it is the magnitude and duration of the decline that are of concern. Most research has been undertaken using total mixed rations or conserved forage and concentrates, where a wide range of quantities and types of feeds have been used. However, no clear conclusions can be drawn regarding optimum levels of feeding, types of forage, or proportions of concentrates that should be fed to cows in the late dry period to minimise the intake decline. The importance of maintaining energy intake is associated with the reduction of the incidence and severity of metabolic diseases post-partum, by reducing triglyceride mobilisation from adipose tissue, and preventing excessive depletion of hepatic glycogen levels.


1984 ◽  
Vol 39 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Margaret Gill ◽  
P. England

ABSTRACTGrass silage was offered ad libitum to twelve 4-month-old British Friesian steers in an incomplete Latin-square experiment. The silage was given either alone or supplemented isonitrogenously with 50 g fish meal or 63 g groundnut meal per kg silage dry matter.Both protein supplements significantly increased the intakes of dry matter and organic matter by an amount about equivalent to the (calculated) contribution of the supplement (P < 0·05); they also increased the intakes of digestible organic matter and nitrogen (P < 0·001) but with no significant difference between supplements. Protein supplementation had no effect on the intake of indigestible organic matter.The digestibility coefficients of dry matter and of organic matter were significantly increased by supplementation (P < 0·05) as were the digestibility coefficients of gross energy and of nitrogen (P < 0·001). Nitrogen retention was also increased from 1·4 to 8·2 g/day (P < 0·001), with no significant difference between supplements.


Sign in / Sign up

Export Citation Format

Share Document