Improving ruminal fermentation and nutrient digestibility in dairy steers by banana flower powder-pellet supplementation

2018 ◽  
Vol 58 (7) ◽  
pp. 1246 ◽  
Author(s):  
Sungchhang Kang ◽  
Metha Wanapat

The present study aimed to investigate the effect of banana flower powder pellet (BAFLOP pellet) on nutrient digestibility, rumen ecology and microorganism population. Four rumen-fistulated dairy steers of 200 ± 20 kg bodyweight were randomly assigned to receive four dietary treatments according to a 4 × 4 Latin square design. The treatments were as follows: control (T1), NaHCO3 supplementation at 20 g/kg of total dry-matter feed intake (DMI; T2), BAFLOP-pellet supplementation at 20 g/kg of DMI (T3) and BAFLOP-pellet supplementation at 40 g/kg of DMI (T4). All cattle were fed roughage–concentrate mix (30 : 70 ratio) at 25 g/kg bodyweight. Standard management protocols were employed during the experimental periods. The results showed that nutrient digestibility was increased in steers supplemented with NaHCO3 and BAFLOP pellets at 40 g/kg DMI (P < 0.05). Although ruminal temperature and blood urea nitrogen were not influenced by dietary supplementation, ruminal pH was increased (P < 0.05) in steers supplemented with NaHCO3 and BAFLOP pellets at 40 g/kg DMI. In addition, NaHCO3 supplementation increased bacterial and protozoal populations, whereas populations of fungal zoospores were similar among treatments. Supplementation with BAFLOP pellets at 40 g/kg DMI increased the bacterial count, whereas protozoal numbers were similar to those in the control group (P < 0.05). On the basis of the present findings, BAFLOP-pellet supplementation improved nutrient digestibility, ruminal pH and microbial population, without having any adverse effects on voluntary feed intake. The present study showed promising results for BAFLOP pellets (40 g/kg DMI) as a rumen dietary buffering agent, suggesting that these pellets could be used a replacement for sodium bicarbonate in ruminants fed high-concentrate diets.

2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 128-128
Author(s):  
Lauren Ovinge ◽  
Mitch Norman ◽  
Kaylee Wheeler ◽  
Galen E Erickson

Abstract The effect of high protein dried distillers grains plus solubles in steam flaked corn (SFC) or dry rolled corn (DRC)-based diets on rumen fermentation and nutrient digestion was evaluated. Six ruminally and duodenally cannulated heifers were utilized in a 6×6 Latin Square experiment using a 2×3 factorial treatment design. One factor was SFC or DRC-based diets, and the other factor was a control with no DGS (CON), regularly produced DDGS (DDGS), or High Protein DDGS (HiPro) included at 30% in the diet (DM basis). Data were analyzed using the MIXED procedure of SAS, with individual steer within period as the experimental unit. There was an interaction of apparent total tract starch digestibility (P 0.01), as including either DDGS or HiPro reduced starch digestibility in DRC-based diets and tended (P = 0.06) to reduce starch digestibility in SFC-based diets. Digestibility of starch was greater (P < 0.01) for SFC versus DRC-based diets across distillers treatments. Dry matter and OM apparent total tract digestibility was lowest (P < 0.01) for HiPro and DDGS was intermediate. There was no difference in molar acetate proportions (P > 0.43) between treatments. Dry rolled corn tended (P = 0.08) to have greater propionate proportion than SFC (44 vs 38%; respectively). Ammonia concentration was greater (P < 0.01) for DRC-based diets, and greatest for CON (P < 0.01) over DDGS and HiPro treatments. Average ruminal pH was unaffected by treatment (P > 0.16). Digestible energy (Mcal/kg) tended (P = 0.08) to be greater for CON over HiPro and DDGS. The use of HiPro did not affect apparent total tract nutrient digestibility as compared to DDGS in SFC or DRC-based diets. The use of either distillers product did result in a reduction in energy intake and digestibility, without affecting ruminal metabolic parameters.


2014 ◽  
Vol 112 (2) ◽  
pp. 170-182 ◽  
Author(s):  
Longhui Jing ◽  
Ruiyang Zhang ◽  
Yujie Liu ◽  
Weiyun Zhu ◽  
Shengyong Mao

In the present study, three primiparous lactating Holstein cows (260–285 d in lactation) were used in a 3 × 3 Latin square design to assess the effects of three doses (0·0, 0·4 and 0·8 μg/kg body weight) of lipopolysaccharide (LPS, Escherichia coli 0111:B4) on changes in ruminal microbiota and ruminal fermentation. Ruminal pH was linearly decreased (P< 0·001) by LPS challenge, and the concentrations of acetate, propionate, butyrate, total volatile fatty acids and amino N increased linearly (P< 0·001) according to the LPS dose. LPS infusion linearly decreased (P< 0·001) the organic matter degradability of alfalfa hay and soyabean meal in the rumen, but did not affect (P>0·10) the gene expression of Na+/K+-ATPase and monocarboxylic acid transporter-1, -2 and -4. A plot of principal coordinate analysis based on unweighted UniFrac values and analysis of molecular variance revealed that the structure of ruminal bacterial communities in the control was distinct from that of the ruminal microbiota in the cattle exposed to LPS. At the phylum level, when compared with the control group, LPS infusion in the tested cows linearly increased (P< 0·05) the abundance of Firmicutes, and linearly decreased (P< 0·05) the percentage of Bacteroidetes, Tenericutes, Spirochaetes, Chlorobi and Lentisphaerae. To our knowledge, this is the first study to report that intravenously LPS challenge altered the ruminal bacterial microbiota and fermentation profiles. The present data suggest that systemic LPS could alter ruminal environment and ruminal microbiota composition, leading to a general decrease in fermentative activity.


2019 ◽  
Vol 99 (2) ◽  
pp. 268-282
Author(s):  
Jayakrishnan Nair ◽  
David Christensen ◽  
Peiqiang Yu ◽  
Aaron D. Beattie ◽  
Tim McAllister ◽  
...  

Two metabolism studies were conducted to evaluate the effect of variety and level of inclusion of barley silage on ruminal fermentation and total tract nutrient digestibility using beef heifers fed backgrounding (Study 1) and finishing (Study 2) diets. Both studies were 4 × 4 Latin square designs with a 2 × 2 factorial arrangement (barley varieties, CDC Cowboy and Xena; levels of inclusion, LOW and HIGH). Barley varieties did not vary in 30 h neutral detergent fiber (NDF) digestibility and averaged 37.1% ± 1.86% (% of NDF) across varieties. Heifers fed CDC Cowboy had greater (P = 0.05) mean ruminal pH and a lower (P = 0.01) duration under pH 5.8 relative to those fed Xena in Study 1, whereas heifers fed HIGH-silage diets had lower (P = 0.05) duration under ruminal pH 5.8 than those fed LOW-silage diets in Study 2. Variety of barley had minimal impact on ruminal fermentation and total tract nutrient digestibility in heifers fed barley silage, although high NDF content decreased energy intake. High NDF barley varieties and greater inclusion levels also increased ruminal pH which may improve total tract fiber digestibility in heifers fed finishing diets.


2018 ◽  
Vol 39 (6) ◽  
pp. 2621
Author(s):  
Ludmila Couto Gomes ◽  
Claudete Regina Alcalde ◽  
Julio Cesar Damasceno ◽  
Luiz Paulo Rigolon ◽  
Ana Paula Silva Possamai ◽  
...  

Feeding goats with calcium salts of fatty acids (CSFA) can supply ruminants with lipids, with minimal effects on ruminal fermentation and fiber digestibility. However, there is a shortage of information on the effect of CSFA on characteristics of rumen fermentation in grassland goats. Thus, the present study aimed to assess the addition of CSFA to concentrate on the parameters of rumen fermentation of grazing goats. Five rumen cannulated goats were distributed in a Latin square 5x5 design (treatments: 0%, 1.5%, 3.0%, 4.5% and 6.0% CSFA. The pH, ammonia N and volatile fatty acids (VFA) content were analyzed in the ruminal fluid at 0, 2, 4, 6 and 8 hours after concentrate supplementation. The pH and ammonia N concentration showed a linear effect with the addition of CSFA. There was no effect observed for the VFA molar concentration after grazing goats were fed with the experimental diet. In conclusion, further research is needed to investigate the addition of CSFA to goat diets because there is evidence that CSFA increases ruminal pH and decreases excess ruminal ammonia without changing the VFA concentration in the rumen fluid.


2021 ◽  
pp. 1158-1164
Author(s):  
Anuthida Seankamsorn ◽  
Anusorn Cherdthong ◽  
Sarong So ◽  
Metha Wanapat

Background and Aim: Crude glycerin is changed to propionate in the rumen, while chitosan can be used as a feed supplement to increase propionic acid concentration and decrease methane (CH4) production. We hypothesized that supplementation with a combination of a high level of crude glycerin with chitosan could have a beneficial effect on ruminal fermentation and mitigate CH4 production. This study aimed to explore the combined effects of crude glycerin and chitosan supplementation on nutrient digestibility, rumen fermentation, and CH4 calculation in native Thai bulls. Materials and Methods: Four 2-year-old native Thai bulls, weighing 150±20 kg, were kept in a 2×2 factorial arrangement in a 4×4 Latin square design. Factor A represented the incorporation of crude glycerin at 10.5% and 21% of the dry matter (DM) of a total mixed ration (TMR), and factor B represented the supplementation of chitosan at 1% and 2% DM of a TMR. Results: Increasing levels of crude glycerin at 21% decreased DM intake by 0.62 kg/day compared with 10.5% crude glycerin (p<0.05), whereas nutrient digestibility did not change (p>0.05). The incorporated crude glycerin and supplemented chitosan levels did not affect the pH, temperature, concentrations of ammonia-nitrogen, microbial population, and blood urea nitrogen (p>0.05). Supplemented chitosan and incorporated crude glycerin did not show any interaction effects on the molar portions and total volatile fatty acids (VFAs), except estimated CH4. Increasing the incorporated crude glycerin levels increased propionate and decreased the ratio of acetate to propionate ratio, whereas levels of butyrate, acetate, and total VFAs were unchanged. The combination of crude glycerin at 21% in the TMR with chitosan at 2% reduced CH4 estimation by 5.08% compared with the other feed treatment. Conclusion: Increasing incorporated crude glycerin levels in a TMR significantly elevated the propionate concentration, whereas combining 21% crude glycerin in the TMR diet with 2% chitosan supplementation could depress CH4 estimation more effectively than adding one of these supplements alone.


2014 ◽  
Vol 38 (2) ◽  
pp. 108-113
Author(s):  
Tamara N. Dawood

     This study was carried out at Animal Farm, College of Veterinary Medicine, Baghdad University from April up to July 2013. The animals were fed on concentrate diet and freely grazed for 3-6 hours/ day at College Field, rams were used in a Latin square design (4*4) and trans located biweekly intervals, respectively to different concentrate diets, the first diet 2% of the body weight which was free from any addition  and considered as a control, the second diet was contain 3% Cuminum cyminum seeds (CU), while the third diet was contain 3% of Ocimum basilicom seeds (B) and the fourth concentrated diet was contain 1.5% of Cuminum cyminum and 1.5% Ocimum basilicom seeds (CU+B). Results revealed that there was significant (P<0.05) difference existed during the first two periods in the body gain compared with other periods, pH of rumen liquor of the control group 6.00±0.24 showed significantly (P<0.05) higher than all other animals during all periods 5.42±0.095, 5.40±0.14 and 5.65±0.11, while the volatile fatty acids were significantly lower in the control animal 8.25±0.75 compared with other animals, ammonia concentration in the rumen liquor, showed higher significant (P<0.05) difference 9.33±0.13 and 9.60±0.43 respectively in the third and fourth period than first period 7.52±0.28, on the other hand bacterial count of the control group was significantly (P<0.05) lower than other groups.


Author(s):  
N. Suphrap ◽  
C. Wachirapakorn ◽  
C. Thamrongyoswittayakul and C. Wongnen

This study was conducted to investigate the effect of vegetable oil and yeast fermented cassava pulp (YFCP) supplementation on feed intake, nutrient digestibility and rumen fermentation in Thai Friesian dairy cows (Thai native x Holstein Friesian). Eight Thai Friesian dairy cows (447±44 kg.BW) were assigned to 4×4 double latin square design (DLSD) with two sources of oil i.e. palm oil (PO) or soybean oil (SBO) and four levels of YFCP (0, 5, 10 and 20%DM) in the dietary treatments. All cows received total mixed ration (TMR) comprised of rice straw to concentrate at a ratio of 40:60. The results showed that supplementation of SBO had lowered feed intake, nutrients digestibility, metabolize energy intake (MEI), total digestible nutrient (TDN) and methane emission than PO treatment. However, cows received SBO had greater total volatile fatty acid (TVFA), propionic acid (C3), butyric acid (C4) than cows received on PO (P less than 0.05). In addition, supplementation of YFCP at 10%DM in the diet as an optimum level in dairy cow diets (P greater than 0.05). Finally, the interaction between the addition of SBO and YFCP at 10%DM (SBO+YFCP) had a positive effect on enhancing ether extract intake (EEI) in dairy cows.


2019 ◽  
Vol 4 (1) ◽  
pp. 149-158 ◽  
Author(s):  
Alex A Pursley ◽  
Bill Biligetu ◽  
Tom Warkentin ◽  
Herbert A Lardner ◽  
Gregory B Penner

Abstract The objective of this study was to evaluate the stage of maturity at harvest for pea hay (Pisum sativum L., c.v. CDC Horizon) on dry matter intake (DMI), eating behavior, ruminal fermentation, and digestibility when fed to beef heifers. Pea hay was cut at EARLY (defined to occur when flat pods were on one or more nodes), MID (when seeds filled the pods at one or more nodes and the leaves were changing from green to gold), and LATE (yellow dry seeds filled pods on most or all of the nodes and the pods and leaves had a yellow color) phases, and was cured in the field and baled. Six ruminally-cannulated Speckle Park heifers were used in a replicated 3 × 3 Latin square design with three 18-d periods including 12 d for adaptation, 2 d for measurement of ruminal pool sizes, and 4 d for the collection of eating behavior, ruminal pH, ruminal digesta, and feces. For all treatments, the respective pea hay was included at 40% of the dietary DM. Stage of maturity at harvest for pea hay did not affect total DMI, pea hay DMI, or the total short-chain fatty acid concentration in ruminal fluid with averages of 8.6 kg/d, 3.2 kg/d, and 96.55 mM, respectively. The duration of time spent ruminating decreased with advancing pea hay maturity when reported as min/d, min/kg DMI, and min/kg neutral detergent fiber (NDF) (P ≤ 0.01). Mean ruminal pH also decreased with advancing pea maturity (P &lt; 0.01). The ruminal DM and undigested NDF corrected for OM pools were not affected by stage of maturity (P ≥ 0.55) nor was the rate of digestion for NDF. However, NDF passage rate decreased by 0.21%/h with advancing pea hay maturity (P = 0.02). Apparent total tract digestibility of NDF (average = 16.30%, P = 0.41) was not affected, but starch digestibility decreased from 96.10% to 93.08% with advancing pea hay maturity (P = 0.07). Overall, stage of maturity at harvest for pea hay does not appear to affect DMI or NDF digestibililty but decreases chewing activity, apparent total tract starch digestibility, ruminal pH, and ruminal NDF passage rate.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 220-220
Author(s):  
Cody Ream ◽  
Allison V Stevens ◽  
Gwinyai Chibisa

Abstract This study examined the effects of altering ruminal fermentable carbohydrate (RFC) supply by feeding different amounts of corn and wheat in finishing cattle diets containing 15% corn dried distillers grains [DDGS; dry matter (DM) basis] on ruminal fermentation characteristics and nitrogen (N) utilization. Six ruminally-cannulated crossbred heifers were used in a replicated 3 × 3 Latin square design with 28 d periods. Dietary treatments were either corn (73% of diet DM; CON), 53:20 corn:wheat blend (20W) or 33:40 corn:wheat blend (40W) as the major fermentable carbohydrate source. Diets were isonitrogenous (12% CP; DM basis). Feed intake was measured daily. Indwelling pH logger were used to measure ruminal pH (d 22 to 28) and ruminal fluid was collected from d 26 to 28 to determine fermentation characteristics, as were feces and urine to measure N excretion. Data was analyzed using PROC MIXED in SAS. Dry matter and N intake tended to be lower (P ≤ 0.07) for heifers fed the 40W compared to the CON and 20W diets. There was no diet effect (P = 0.15) on total VFA concentration; however, the duration and area for pH &lt; 5.5 tended to be longer (P = 0.07) and greater (P = 0.096), respectively, for heifers fed the 20W and 40W compared to the CON diet. There was no diet effect (P ≥ 0.44) on ruminal ammonia concentration and total urine N excretion (g and % of N intake). However, urine urea N (UUN) excretion as a percentage of total urine N tended to be lower (P = 0.05) in heifers fed the 20W and 40W compared to the CON diet. In summary, although altering RFC supply by feeding increasing amounts of wheat resulted in a decrease in UUN excretion, it also caused a decrease in ruminal pH that possibly compromised DM intake.


2020 ◽  
Vol 98 (5) ◽  
Author(s):  
Rodrigo S Goulart ◽  
Ricardo A M Vieira ◽  
Joao L P Daniel ◽  
Rafael C Amaral ◽  
Vanessa P Santos ◽  
...  

Abstract The objectives of this research were to evaluate the effects of source and concentration of α-amylase-treated neutral detergent fiber (aNDF) from roughage on feed intake, ingestive behavior, and ruminal kinetics in beef cattle receiving high-concentrate diets. Six ruminally cannulated Nellore steers (408 ± 12 kg of body weight) were randomly assigned to a 6 × 6 Latin square design with six diets: 10% aNDF from corn silage (10CS); 20% aNDF from corn silage (20CS); or four diets containing 10% aNDF from corn silage and 10% aNDF from one of the following sources: sugarcane (SC), sugarcane bagasse (SCB), soybean hulls (SH), or low oil cottonseed hulls (LOCH). The parameters of passage and degradation kinetics were estimated based on a two-compartmental model with gamma- and exponential-distributed residence times. The nonlinear models were fitted by nonlinear least squares, and a linear mixed-effects model was fitted to all variables measured from the Latin square design that were related to intake, digestibility, digestion kinetic parameters, and residence times. Mean particle size (MPS) between roughage sources (CS, SCB, and SC) and coproducts (SH and LOCH) was affected (P &lt; 0.05). Dry matter intake (DMI) was not affected (P &gt; 0.05) by 20CS, SC, SH, or LOCH. Steers fed 20CS or LOCH diets had 16% and 20% greater DMI, respectively, (P &lt; 0.05) than steers fed 10CS diet. Steers fed SCB consumed the least dry matter (DM). The SH and LOCH diets had lower MPS values (about 8.77 mm) in comparison to 20CS, SCB, and SC diets (about 13.08 mm) and, consequently, affected (P &lt; 0.05) rumen content, ruminal in situ disappearance, nutrient digestibility, and solid fractional passage rate. Chewing time was affected (P &lt; 0.05) by roughage sources and concentration. Lower values of distance travel inside the rumen (min/cm) were observed (P &lt; 0.05) for the SCB and SC diets in comparison with any other diet. Except for SCB, there was no difference (P &gt; 0.05) in rumen fill, among other treatments. Mean daily ruminal pH was not affected (P &gt; 0.05) by 20CS, SCB, SC, and LOCH diets, and it ranged from 6.1 to 6.23. Total short-chain fatty acids concentration was affected (P &lt; 0.05) by roughage source and concentration. Based on our results, we recommend that under Brazilian finishing diets, replacing roughage sources, except for SCB, based on aNDF concentration of the roughage in high-concentrate diets containing finely ground flint corn does not affect DMI.


Sign in / Sign up

Export Citation Format

Share Document