Linseed and glycerol in forage diets effect methane production and rumen fermentation parameters in a Rusitec semi-continuos system

2020 ◽  
Vol 60 (7) ◽  
pp. 923
Author(s):  
Constanza Gutierrez-Gomez ◽  
Nelson Vera ◽  
Rodrigo Allende ◽  
Pamela Williams ◽  
Rita Astudillo ◽  
...  

Context The use of oilseeds as a feed ingredient has been proposed to improve fatty acid profiles and reduce methane (CH4) emissions. Glycerol has been used as a common additive in ruminant feeding systems with variable effects on CH4 production. The effects of the combination of these ingredients remain unknown. Aims The aim of this study was to assess the effects of feeding linseed and increasing concentrations of glycerol in forage diets supplemented with corn grain on nutrient disappearance, CH4 production and rumen fermentation parameters. Methods Experimental diets were: control (70:30% hay:corn); linseed (70:15 :15% hay:corn:linseed); 5% glycerol (70:10:15:5% hay:corn:linseed:glycerol); 10% glycerol (70:5:15:10% hay:corn:linseed:glycerol). Diets were incubated in a completely randomised design with four replicates per treatment in a Rusitec apparatus for 15 days (10 days adaptation, 5 days sampling). Key results Total VFA production (VFA, mmol/day) was quadratically increased due to glycerol concentration in the diets (P = 0.009). Acetate:propionate (A:P) decreased by the inclusion of linseed (P < 0.001) and glycerol into the diets (P < 0.001). Linseed inclusion in the diet reduced CH4 production, mg/DM disappeared (P = 0.004) by up to 36%. These effects were not altered by the addition of glycerol into the diets. Ammonia nitrogen (NH3-N) production increased 2-fold in the linseed-added diets, but this effect was partially reverted by increasing glycerol concentrations in the diets (P < 0.001). Crude protein (CP) disappearance increased (P < 0.001) in the linseed added diets, with no effect of glycerol addition. Neutral detergent fibre (aNDFom; P = 0.005) disappearance was increased by the addition of linseed to the diet. Conclusions The use of linseed in ruminant diets reduces CH4 emissions but increases NH3-N production in a Rusitec system. This latter effect is partially reverted by glycerol inclusion in the diet. Propionate production increases with the inclusion of glycerol, but does not alter CH4 production. Including linseed increases the in vitro CP disappearance without affecting DM total disappearance. Implications Care should be taken with the use of oilseeds in ruminant diets as it can reduce CH4 emissions but may cause important increases in NH3 emissions. Inclusion of glycerol may partially overcome this latter issue.

Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1120 ◽  
Author(s):  
Juana C. Chagas ◽  
Mohammad Ramin ◽  
Sophie J. Krizsan

We assessed and ranked different dietary strategies for mitigating methane (CH4) emissions and other fermentation parameters, using an automated gas system in two in vitro experiments. In experiment 1, a wide range of dietary CH4 mitigation strategies was tested. In experiment 2, the two most promising CH4 inhibitory compounds from experiment 1 were tested in a dose-response study. In experiment 1, the chemical compounds 2-nitroethanol, nitrate, propynoic acid, p-coumaric acid, bromoform, and Asparagopsis taxiformis (AT) decreased predicted in vivo CH4 production (1.30, 21.3, 13.9, 24.2, 2.00, and 0.20 mL/g DM, respectively) compared with the control diet (38.7 mL/g DM). The 2-nitroethanol and AT treatments had lower molar proportions of acetate and higher molar proportions of propionate and butyrate compared with the control diet. In experiment 2, predicted in vivo CH4 production decreased curvilinearly, molar proportions of acetate decreased, and propionate and butyrate proportions increased curvilinearly with increased levels of AT and 2-nitroethanol. Thus 2-nitroethanol and AT were the most efficient strategies to reduce CH4 emissions in vitro, and AT inclusion additionally showed a strong dose-dependent CH4 mitigating effect, with the least impact on rumen fermentation parameters.


Animals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 451 ◽  
Author(s):  
Pablo Jose Rufino-Moya ◽  
Mireia Blanco ◽  
Sandra Lobón ◽  
Juan Ramon Bertolín ◽  
Ramón Armengol ◽  
...  

Ewes receive hay or graze on fresh pastures supplemented with concentrates to fulfil their lactation requirements. Quebracho (Schinopsis balansae) can be added to change the ruminal fermentation. Fermentation parameters of forages alone and 70:30 forage:concentrate diets with control and quebracho concentrate were compared after 24 h of in vitro incubation. Fresh forage diets produced less gas (p < 0.05) and had greater IVOMD (p < 0.001), ammonia (NH3-N) content, valeric acid, branched-chain volatile fatty acid proportions, and lower propionic acid proportion than the hay diets (p < 0.01). In the hay diets, methane production increased with control concentrate (p < 0.01) and tended to decrease with quebacho concentrate (p < 0.10). The inclusion of both concentrates increased the acetic:propionic ratio (p < 0.01), and only the inclusion of quebracho concentrate increased the IVOMD (p < 0.01). In the fresh forage diets, gas and methane production increased with the inclusion of the control concentrate (p < 0.05), but methane production decreased with quebracho concentrate (p < 0.01). The inclusion of quebracho concentrate reduced the NH3-N content and valeric acid proportion (p < 0.05). In conclusion, the inclusion of quebracho concentrate would be advisable to reduce the CH4 production and NH3-N content in fresh forage diets and to increase the IVOMD in hay diets in comparison with the forages alone.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 157-158
Author(s):  
Nelson Vera ◽  
Sandra Suescun-Ospina ◽  
Rita Astudillo ◽  
Antonia Muñoz ◽  
Rodrigo Allende ◽  
...  

Abstract Replacing synthetic feed additives by plant secondary metabolites (PSM) as essential oils, saponins and tannins has been proposed, due to their potential to reduce methane (CH4) emissions, without adverse effects on ruminal fermentation. This study aimed to evaluate the use of oregano essential oil (OR), quillaja saponin (QS), and quebracho tannin (QT) extracts and their combinations as feed additives on in vitro CH4 production and rumen fermentation parameters. The design was an incomplete factorial arrangement in a randomized complete block with seven treatments using batch culture. Dietary treatments were: control (CON), without plant extracts; OR (0.07% dry matter [DM] basis of the diet); QS (0.05% DM); QT (1.00% DM); and binary combinations QT+QS (1.00 and 0.05% DM, respectively); OR+QS (0.07 and 0.05% DM, respectively); and OR+QT (0.07 and 1.00% DM, respectively). The forage to concentrate ratio was 51:49. Forage was composed of corn silage (42.0%) and perennial ryegrass and white clover hay (9.0%); concentrate was based on high–moisture corn (33.0%), soybean meal (15.0%), vitamin and mineral salt (1%). All combinations decreased the net CH4 and its production (P ≤ 0.038 and P ≤ 0.027, respectively). However, the interaction between QT and QS decreased CH4 yield (P = 0.046), whereas OR and QS interaction, trended to decreased CH4 yield (P = 0.068) and the in vitro DM disappearance (IVDMD; P = 0.055). In contrast, the interaction between OR and QT decreased the IVDMD (P = 0.036). The gas output, partitioning factor and pH, were unaffected (P ≥ 0.066) by PSM, separately or in combinations. The results suggest that QT+QS is the best PSM combination to reduce the amount of CH4 per g DM degraded without adversely impacting rumen fermentation and diet digestibility. Although OR+QT or OR+QS are also an alternative to reduce CH4, its combination may also reduce diet digestibility.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 468-468
Author(s):  
Sandra Suescun-Ospina ◽  
Nelson Vera ◽  
Rita Astudillo ◽  
Jorge Avila-Stagno

Abstract Grape marc (GM) is a viticulture by-product used as cattle supplement in periods of shortage of conventional feed sources. It contains fats, high concentrations of polyphenols and has been reported to reduce enteric methane (CH4) emissions. In-vitro batch culture was used to study the effects of substitution of mixed hay (MH) for a traditional Chilean variety (Vitis vinifera “País”) of GM on in vitro dry matter disappearance (IVDMD), rumen fermentation parameters (short chain fatty acids, pH, partitioning factor), gas and CH4 production in a 60% forage diet (dry matter, DM). The study was a randomized complete design with 3 treatments and 3 replicates, incubated for 24 h at 39º C. Treatments were: T1 (Control): 20% MH, 40% corn silage, 40% concentrate; T2 = 10% MH, 10% GM, 40% corn silage, 40% concentrate; T3 = 20% GM, 40% corn silage, 40% concentrate. Means were compared with the Tukey test (P &lt; 0.05), and polynomial contrasts. Substitution of MH with GM significantly reduced ammonia nitrogen (NH3-N) by 50% (P &lt; 0.05), although it did not affect IVDMD, gas production or other rumen fermentation parameters (P &gt; 0.05). Total CH4 (mg) linearly decreased (P = 0.013) as concentrations of GM increased. Methane production (mg/g DM incubated) and yield (mg/g DM digested) decreased linearly (P = 0.002 and P = 0.003, respectively) as inclusion of GM increased. Inclusion of GM at 20% reduced CH4 production by 19% and CH4 yield by 16.4%. These results indicate that partial substitution of dietary fiber sources with traditional Chilean País GM in high fiber diets is a viable feeding alternative, and can decrease environmental impact (lower CH4 and ammonia emissions) of ruminant livestock, without negatively affecting rumen fermentation parameters.


2021 ◽  
Author(s):  
Sonny C. Ramos ◽  
Seon Ho Kim ◽  
Chang Dae Jeong ◽  
Lovelia L. Mamuad ◽  
A-Rang Son ◽  
...  

Abstract This study determined the buffering capacity of buffer agents and its effect on in vitro and in vivo rumen fermentation characteristics and bacterial composition of a high-concentrate fed Hanwoo steers. Both BC0.9% and BC0.5% had significantly highest buffering capacity, pH, and ammonia-nitrogen (NH3-N) than BC0.3% and CON at 24 h incubation. Individual and total volatile fatty acids (VFA) were significantly lowest in CON. Phylum Bacteroidetes dominated all treatments but a higher abundance of Firmicutes in BC0.5% than others. Ruminoccocus bromii and Succiniclasticum ruminis were dominant in BC0.5% and Bacteroides massiliensis in BC0.3%. The normalized data of relative abundance of observed OTUs’ representative families have grouped the CON with BC0.3% in the same cluster, whereas BC0.5% and BC0.9% were clustered separately which indicates the effect of varying buffering capacity of buffer agents. Principal coordinate analysis (PCoA) on unweighted UniFrac distances revealed close similarity of bacterial community structures within and between treatments and control, in which BC0.9% and BC0.3% groups showed dispersed community distribution. Overall, the increasing buffering capacity enhances rumen fermentation parameters and affects rumen microbiome by altering bacterial community through distinct structure between high and low buffering capacity, thus an important factor to prevent ruminal acidosis during a high-concentrate diet.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 469-470
Author(s):  
Sandra Suescun-Ospina ◽  
Nelson Vera ◽  
Rita Astudillo ◽  
Jorge Avila-Stagno

Abstract País Grape (Vitis vinifera L.) is an ancestral variety used in Chilean wine industry. It has a higher content of proanthocyanidins than commercial varieties such as Carmenère or Pinot Noir, resulting in País grape marc (PGM) with high contents of condensed tannins. As such, PGM inclusion in ruminant diets would have the potential to reduce enteric methane (CH4) emissions and decrease urinary N excretion. The objective of this study was to evaluate the effects of substitution of mixed hay (MH) with PGM in a high concentrate diet [65% dry matter (DM)] on in vitro dry matter disappearance (IVDMD), ruminal fermentation parameters, gas and CH4 production. Treatments were: T1 (Control) = 20% MH, 15% corn silage, 65% concentrate; T2 = 10% MH, 10% PGM, 15% corn silage, 65% concentrate; T3 = 20% PGM, 15% corn silage, 65% concentrate. The study was a randomized complete design with 3 treatment and 3 replicates, incubated for 24 h at 39º C. Data were compared by Tukey test and polynomial contrasts. There was a linear reduction in NH3-N (P = 0.001) as dietary PGM increased. Inclusion of PGM reduced NH3-N by 50% when added at 10% DM, and 71.7% at 20% DM. However, there also was 4% reduction in IVDMD (P ≤ 0.001) and gas production (P = 0.012) in the 20% GM diet. There were no treatment effects (P ≥ 0.05) on CH4 production or yield. Fermentation efficiency determined by the partition factor increased linearly (P = 0.013) as PGM inclusion increased, suggesting that it increases organic matter to be degraded. Based on this study it could be concluded that PGM is an alternative source of fiber for ruminants on concentrate diets, as it can result in improved rumen fermentation efficiency and a substantial reduction in ruminal ammonia nitrogen concentration (NH3-N).


2018 ◽  
Vol 18 (3) ◽  
pp. 753-767 ◽  
Author(s):  
Amina Boussaada ◽  
Rabah Arhab ◽  
Serena Calabrò ◽  
Raffaella Grazioli ◽  
Maria Ferrara ◽  
...  

Abstract The aim of the research was to evaluate the effect of three Eucalyptus globulus extracts rich in phenolic compounds, especially flavonoids, on rumen fermentation, methane (CH4) production, organic matter degradability and protozoa population using an in vitro gas production technique. Four concentrations (0, 50, 75 and 100 mg) of three Eucalyptus extracts (ethyl acetate, n-butanol and aqueous) were added to a diet of ruminants (forage: concentrate ratio 60:40) and incubated at 39°C under anaerobiosis with buffered rumen fluid. After 24 h, the fermentation fluid was analysed for ammonia-N and volatile fatty acids (VFA). Organic matter degradability (OMD) and protozoa were also determined; in vitro gas production was also recorded and CH4 concentration was measured. Compared to the control, CH4 production was significantly lower for ethyl acetate extract (P<0.05), but higher for n-butanol and aqueous extracts. Production of ammonia- N was lower in all Eucalyptus extracts (P<0.05). Propionate production (P<0.05) increased for ethyl acetate and n-butanol extracts, whereas no effect was registered for VFA, for all Eucalyptus extracts. Ethyl acetate extract decreased in vitro OMD (P<0.05), whereas n-butanol and aqueous extracts were comparable to the control. Protozoa population decreased (P<0.05) for all extracts in comparison with the control. Eucalyptus ethyl acetate extract might be promising to be used as a potent anti-methanogenic additive. Moreover, the assessment of the right dosage seems to be important to decrease methane production, without reducing feed nutritional value.


2020 ◽  
Vol 73 (6) ◽  
pp. 582-586
Author(s):  
Ravi Prakash Pal ◽  
Veena Mani ◽  
Srobana Sarkar ◽  
Shahid Hassan Mir ◽  
Amit Sharma ◽  
...  

2014 ◽  
Vol 27 (11) ◽  
pp. 1577-1583 ◽  
Author(s):  
Chiedza Isabel Mamvura ◽  
Sangbuem Cho ◽  
David Tinotenda Mbiriri ◽  
Hong-gu Lee ◽  
Nag-Jin Choi

Sign in / Sign up

Export Citation Format

Share Document