Effects of timing and placement of urea on aerial-sown semi-dwarf rice in south-east Australia

1989 ◽  
Vol 40 (3) ◽  
pp. 509 ◽  
Author(s):  
DP Heenan ◽  
PE Bacon

Three field experiments over two seasons and on two soil types studied the effects of placement and time of nitrogen fertilizer (N) application on yield and N uptake of aerial-sown semi-dwarf rice. Grain yield and apparent N fertilizer recovery were greatest when fertilizer was drilled into the soil, with no significant difference between 3 cm and 7 cm depth. Placement onto wet soil resulted in significantly lower grain yield and total N uptake than placement onto dry soil or incorporation into the soil. Reducing the time of application before flooding from 15 days to 1 day significantly improved the efficiency of fertilizer use. Delaying the time of application from before flooding to soon after flooding produced much lower grain yield and agronomic efficiency. Further delaying the application time from soon after flooding to around mid-tillering increased the yield response and agronomic efficiency. The results demonstrated that urea should be drilled into the soil as soon as possible before flooding rather than broadcasting onto the soil surface before flooding or into the floodwater after flooding.

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1329
Author(s):  
Fernando Shintate Galindo ◽  
Paulo Humberto Pagliari ◽  
Willian Lima Rodrigues ◽  
Guilherme Carlos Fernandes ◽  
Eduardo Henrique Marcandalli Boleta ◽  
...  

Sustainable management strategies are needed to improve agronomic efficiency and cereal yield production under harsh abiotic climatic conditions such as in tropical Savannah. Under these environments, field-grown crops are usually exposed to drought and high temperature conditions. Silicon (Si) application could be a useful and sustainable strategy to enhance agronomic N use efficiency, leading to better cereal development. This study was developed to explore the effect of Si application as a soil amendment source (Ca and Mg silicate) associated with N levels applied in a side-dressing (control, low, medium and high N levels) on maize and wheat development, N uptake, agronomic efficiency and grain yield. The field experiments were carried out during four cropping seasons, using two soil amendment sources (Ca and Mg silicate and dolomitic limestone) and four N levels (0, 50, 100 and 200 kg N ha−1). The following evaluations were performed in maize and wheat crops: the shoots and roots biomass, total N, N-NO3−, N-NH4+ and Si accumulation in the shoots, roots and grain tissue, leaf chlorophyll index, grain yield and agronomic efficiency. The silicon amendment application enhanced leaf chlorophyll index, agronomic efficiency and N-uptake in maize and wheat plants, benefiting shoots and roots development and leading to a higher grain yield (an increase of 5.2 and 7.6%, respectively). It would be possible to reduce N fertilization in maize from 185–180 to 100 kg N ha−1 while maintaining similar grain yield with Si application. Additionally, Si application would reduce N fertilization in wheat from 195–200 to 100 kg N ha−1. Silicon application could be a key technology for improving plant-soil N-management, especially in Si accumulator crops, leading to a more sustainable cereal production under tropical conditions.


2016 ◽  
Vol 155 (2) ◽  
pp. 261-281 ◽  
Author(s):  
S. E. ROQUES ◽  
D. R. KINDRED ◽  
S. CLARKE

SUMMARYTriticale has a reputation for performing well on poor soils, under drought and with reduced inputs, but there has been little investigation of its performance on the better yielding soils dominated by wheat production. The present paper reports 16 field experiments comparing wheat and triticale yield responses to nitrogen (N) fertilizer on high-yielding soils in the UK in harvest years 2009–2014. Each experiment included at least two wheat and at least two triticale varieties, grown at five or six N fertilizer rates from 0 to at least 260 kg N/ha. Linear plus exponential curves were fitted to describe the yield response to N and to calculate economically optimal N rates. Normal type curves with depletion were used to describe protein responses to N. Whole crop samples from selected treatments were taken prior to harvest to measure crop biomass, harvest index, crop N content and yield components. At commercial N rates, mean triticale yield was higher than the mean wheat yield at 13 out of 16 sites; the mean yield advantage of triticale was 0·53 t/ha in the first cereal position and 1·26 t/ha in the second cereal position. Optimal N requirement varied with variety at ten of the 16 sites, but there was no consistent difference between the optimal N rates of wheat and triticale. Triticale grain had lower protein content and lower specific weight than wheat grain. Triticale typically showed higher biomass and straw yields, lower harvest index and higher total N uptake than wheat. Consequently, triticale had higher N uptake efficiency and higher N use efficiency. Based on this study, current N fertilizer recommendations for triticale in the UK are too low, as are national statistics and expectations of triticale yields. The implications of these findings for arable cropping and cereals markets in the UK and Northern Europe are discussed, and the changes which would need to occur to allow triticale to fulfil a role in achieving sustainable intensification are explored.


2016 ◽  
Vol 96 (4) ◽  
pp. 386-399 ◽  
Author(s):  
Athyna N. Cambouris ◽  
Noura Ziadi ◽  
Isabelle Perron ◽  
Khaled D. Alotaibi ◽  
Mervin St. Luce ◽  
...  

Information on how soil texture and related soil properties affect corn (Zea mays L.) nitrogen (N) response is needed to improve N management in corn production. We conducted a study at 12-site yr in Quebec to assess the effect of N rate (0–250 kg N ha−1) and soil surface textural groups [clay, loam, sandy belonging to the gleysolic soil order (Sg), and sandy belonging to the podzolic soil order (Sp)] on corn grain yield, stover yield, total N uptake (TNU), nitrogen uptake efficiency (NUE), thousand kernel weight (TKW), test weight, and chlorophyll meter readings (CMR). Corn was more responsive to N rate in the clay soil textural group for most of the parameters due to lower soil N supply, and least responsive in the Sp group, except for test weight and CMR, due to possibly greater leaching in this group. The CMR at flowering accounted for 87%, 87%, 82%, and 25% of the variation in grain yield, TNU, TKW, and test weight, respectively. This study suggests that soil surface texture has a major influence on corn N response, but other soil properties such as drainage may also be important.


2009 ◽  
Vol 55 (No. 12) ◽  
pp. 519-527 ◽  
Author(s):  
J. Potarzycki ◽  
W. Grzebisz

Actual yields of maize harvested by farmers are at level much below attainable yield potential of currently cultivated varieties. Among many growth factors zinc was recognized as one of main limiting factors of maize crop growth and yielding. This hypothesis has been verified within a three-year field study, where zinc fertilizer was applied to maize plants at the 5<sup>th</sup> leaf stage. Maize crop responded significantly to zinc foliar application in two of three years of study. The optimal rate of zinc foliar spray for achieving significant grain yield response was in the range from 1.0 to 1.5 kg Zn/ha. Grain yield increase was circa 18% (mean of three years) as compared to the treatment fertilized only with NPK. Plants fertilized with 1.0 kg Zn/ha significantly increased both total N uptake and grain yield. Yield forming effect of zinc fertilizer revealed via improvement of yield structure elements. The number of kernels per plant showed the highest response (+17.8% as compared to the NPK plot) and simultaneously the highest dependence on N uptake (<i>R</i><sup>2</sup> = 0.79). For this particular zinc treatment, however, the length of cob can also be applied as a component of yield structure significantly shaping the final grain yield.


1970 ◽  
Vol 36 (2) ◽  
pp. 231-240 ◽  
Author(s):  
M Ataur Rahman ◽  
MAZ Sarker ◽  
MF Amin ◽  
AHS Jahan ◽  
MM Akhter

A field experiment was conducted at the central research farm of Bangladesh Agricultural Research Institute, Gazipur for two consecutive years to verify the yield response of wheat variety Prodip to different doses and split applications of N fertilizer to determine appropriate N dose and application method for increasing NUE and grain yield of wheat. The treatments comprised of 12 combinations of three doses of nitrogen (80, 100, and 120 kg/ha) from urea, which were assigned in the main plots and four methods of N splitting viz., application of all N as basal; 2/3rd basal plus 1/3rd as top dress at crown root initiation (CR1) stage; 1/2 basal plus 1/2 as top dress at CR1 stage; and 1/3rd basal with 1/3rd as top dress at CR1 plus 1/3rd as top dress at 1st node stage which were tested in the sub plots. Higher yield was achieved from N rate of 120 kgiha applied as three equal splits of one-third as basal during final land preparation, one-third as top dressing during CR1 and the rest one-third top dressing at first node stage. The yield advantage of wheat due to N treatments was attributed to higher thousand grain weight and spikes/m2. Nitrogen content in wheat grain and straw was not affected significantly by different N treatment and their combinations, whereas plant N uptake was significantly influenced by N rate and N splitting and also due to the interaction of N rate and N splitting. Total N uptake was maximum under N rate of 120 kg/ha applied as three equal splits as 1/3rd basal with 1/3rd as top dress at CR1 plus 1/3rd as top dress at 1st node stage. Split applications of sub-optimal dose of N (80 kg/ha) resulted in negative gain in apparent NUE, but split applications, especially three split applications (1/3rd basal, 1/3rd at CR1, and 1/3rd at 1st node stage) of higher dose of N (100 and 120 kg/ha) resulted in positive gain in apparent NUE. Keywords: Wheat grain yield; nitrogen management; N uptake and NUE DOI: http://dx.doi.org/10.3329/bjar.v36i2.9249 BJAR 2011; 36(2): 231-240


2018 ◽  
Vol 21 (1) ◽  
pp. 77-89
Author(s):  
MKA Bhuiyan ◽  
AJ Mridha ◽  
S Singh ◽  
AK Srivastava ◽  
US Singh ◽  
...  

The study was conducted in two locations of coastal districts Patuakhali and Satkhira during 2012 and 2013 T. Aman season. Stress tolerant rice varieties along with nitrogen application using prilled urea (PU), leaf color chart (LCC), urea super granule (USG), and rice crop manager (RCM) software based nitrogen (N) dose were examined. The objectives of the study were to identify the response of saline tolerant varieties to N fertilization on grain yield and profitability. Among the tested varieties, grain yield of BRRI dhan40, BRRI dhan41 and BRRI dhan54 were higher compared to BRRI dhan52 and BRRI dhan53 irrespective of location. There were no significant difference among the better performed varieties. Interaction effect of yield was significant in 2013 at Patuakhali but insignificant in both the locations in 2012. During 2013 in Patuakhali, the interaction effect of BRRI dhan40 × USG and BRRI dhan41 × USG produced higher grain yield and total N uptake. In Satkhira BRRI dhan54 and BRRI dhan40 performed better and produced higher grain yield and N uptake. Among the N application treatments USG application was the best compared to either LCC or RCM. The combination of BRRI dhan54×USG and BRRI dhan41×USG had more economic gains in both 2012 and 2013 in Patuakhali. The combination of BRRI dhan52×USG and BRRI dhan41×LCC appeared as themost profitable in Satkhira during 2013. Integration of saline tolerant varieties along with USG application could improve the yield of saline tolerant rice in saline environmentBangladesh Rice j. 2017, 21(1): 77-89


2015 ◽  
Vol 6 (2) ◽  
pp. 115-120
Author(s):  
MM Ali ◽  
MH Rahman ◽  
MR Khan ◽  
MK Khan

Four field experiments were carried out with Binadhan 7 at Birgonj, Dinajpur; Debigonj, Panchagarh; Kaligonj, Lalmonirhat and Pirgonj, Rangpur during T.aman (kharif II) season of 2011 in the Old Himalalayan Piedmont Plain (AEZ 1) and Tista Meander Floodplain Soils of North-West Bangladesh. The experiments were designed with eight treatments and laid out in randomized complete block design (RCBD) with three replications. The treatment combinations were: T1 (100%STB), T2 (T1 + 25% N), T3 (T1 + 25% NP), T4 (T1 + 25% NK), T5 (T1 + 25% PK), T6 (T1 + 25% NPK), T7 (75% of T1) and T8 (Control). Results indicated that application of different fertilizers significantly affected the grain yield at all of the four locations. The highest grain yield was found in treatment T6 (T1 + 25% NPK). Statistically identical yield was observed in treatments T3, T4 and T5 at Dinajpur; T3 at Panchagar; T2, T3, and T4 at Lalmonirhat and T2 at Rangpur. All the treatment combinations gave significantly higher grain yield over the control at all of the locations. The highest straw yield was found in treatment T6 (T1 + 25% NPK). Statistically identical straw yield was found in T3 and T4 at Dinajpur; T1, T4 and T5 at Panchagar; T2, T4, T5 and T7 Lalmonirhat and all treatments except T7 and T8 at Rangpur. Significantly the lowest yield was obtained in the control treatment (T8) in all of the locations. The highest total N uptake was observed in treatment T6 at all of the four locations. For total P uptake, the similar trend of total N uptake was observed for all the locations. Treatment T6 showed the highest uptake of total K at all locations. The highest uptake of total S was observed in treatment T6 at Dinajpur, Panchagarh and Lalmonirhat. But the highest uptake of total S was observed in treatment T3 at Rangpur. However, the lowest total N, P, K and S uptake was observed in control treatment (T8) at all locations. The partial budget analysis of T.aman rice demonstrated the highest net benefit of tkha-1 85,598/-, 78,619/-, 58,308/- and 72,532/- in T6 treatment followed by tkha-1 76,348/- in T4 treatment, 71,100/- in T3 treatment, 54,192/- in T3 treatment and 68,247/- in T2 treatment where the highest MBCR of 5.40, 3.75, 2.20 and 3.84 was also observed in T6 treatment at Dinajpur, Panchagarh, Lalmonirhat and Rangpur, respectively. Based on most profitable treatments, fertilizer doses of N80P8K40S8Zn1 in Birgonj, Dinajpur; N84P8K40S6Zn1 in Debigonj, Panchagarh; N80P8K40S6Zn1 in Kaligonj, Lalmonirhat and N81P8K35S8Zn1 in Pirgonj, Rangpur could be recommended for higher yield of Binadhan-7 rice in North-West Bangladesh.DOI: http://dx.doi.org/10.3329/jesnr.v6i2.22106 J. Environ. Sci. & Natural Resources, 6(2): 115-120 2013


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 752
Author(s):  
Aliasghar Montazar ◽  
Daniel Geisseler ◽  
Michael Cahn

Nitrogen (N) and irrigation water must be effectively used in mineral soils to produce carrots with high yield and minimal environmental impact. This study attempts to identify optimal N and irrigation management practices for low desert carrot production in California by investigating consumptive water use and N uptake and removal rates in fresh market and processing carrots. Field experiments were conducted at the University of California Desert Research and Extension Center and nine farmer fields during two growing seasons. The actual evapotranspiration (ETa) was measured using the residual energy balance method with a combination of surface renewal and eddy covariance equipment. Crop canopy coverage, actual soil nitrate-N from multiple depths as well as total N percentage, dry matter, and fresh biomass in roots and tops were measured over the growing seasons. The length of the crop season had a wide range amongst the experimental sites: from a 128-day period in a processing carrot field to as long as 193 days in a fresh market carrot field. The seasonal ETa varied between 305.8 mm at a silty loam furrow irrigated processing carrot field and 486.2 mm at a sandy clay loam sprinkler irrigated fresh market field. The total N accumulated at harvest ranged between 205.4 kg ha−1 (nearly 52% in roots) and 350.5 kg ha−1 (nearly 64% in roots). While the mean value of nitrogen removed by carrot roots varied from 1.24 to 1.73 kg N/Mg carrot roots, it appears that more N was applied than was removed by carrot roots at all sites. Within the range of N application rates examined at the experimental sites, there was no significant relationship between carrot fresh root yield and N application rate, although the results suggested a positive effect of N application on carrot yield. Sufficient soil N availability over the growing season and the lack of significant yield response to N application illuminated that optimal N rates are likely less than the total amounts of N applied at most sites.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1837
Author(s):  
Maria Isabella Sifola ◽  
Ida Di Mola ◽  
Eugenio Cozzolino ◽  
Lucia Ottaiano ◽  
Gennaro Piccirillo ◽  
...  

Tobacco is an annual cash crop widely cultivated over the world, which generally needs great amounts (N) of nitrogen to achieve the best yield and quality. However, with a view to sustainable and environmentally friendly agriculture, also for this crop, the reduction in N fertilization is a priority, but without negatively affecting the yield and quality of the cured product. Therefore, field experiments were conducted during 2002 and 2003 on light air-cured (Burley) tobacco at three different locations of the Campania region (Southern Italy) where high-quality light air-cured (Burley) tobacco is traditionally cultivated. At each location, the following six N fertilization treatments were compared with four replications (blocks): (i) a not fertilized control (N0); (ii) 50 kg N ha−1 (N50); 90 kg N ha−1 (N90); 130 kg N ha−1 (N130); 170 kg N ha−1 (N170); 210 kg N ha−1 (N210). The yield of cured leaves appeared positively influenced by N fertilization but not at a rate higher than 170 kg ha−1. N fertilization directly influenced nitrates and the total N content of cured leaves at all locations. The greater values of both parameters were reached at N130 or N90, respectively, at Vitulazio (CE), N170 at Bellizzi (SA), and N90 at San Giorgio del Sannio (BN). The fire holding capacity increased with N fertilization up to N170 treatment (12–13 s at CE and BN but just 8 s at SA). L* (brightness) decreased with increasing N fertilization giving cured leaves less bright and opaquer. The a/b ratio (a*, green/red; b*, blue/yellow) increased with N treatments producing cured leaves of dark hazelnut. The best scores were assigned to cured products obtained by plants fertilized with 170 kg N ha−1. N-use efficiencies were negatively influenced by N fertilization. The best NUE and N-uptake efficiency was recorded in 2002 at Vitulazio (CE), in spite of a higher NO3-N before N fertilization than other locations.


2006 ◽  
Vol 86 (1) ◽  
pp. 121-131 ◽  
Author(s):  
M. J. Wiens ◽  
M. H. Entz ◽  
R. C. Martin ◽  
A. M. Hammermeister

Field experiments were established at two locations in Manitoba in 2002 and 2003 to determine N contribution, moisture conservation, and weed suppression by alfalfa mulch applied to spring wheat (Triticum aestivum L). Mulch treatments included mulch rate (amount harvested from an area 0.5×, 1× and 2× the wheat plot area), and mulch application timing (at wheat emergence or at three-leaf stage). Positive relationships were observed between mulch rate and wheat N uptake, grain yield, and grain protein concentration. At Winnipeg, the 2× mulch rates (3.9 to 5.2 t ha-1) produced grain yields equivalent to where 20 and 60 kg ha-1 of ammonium nitrate-N was applied in 2002 and 2003, respectively. Where mulch and ammonium nitrate produced equivalent grain yield, grain protein in mulch treatments was often higher than where chemical fertilizer was used. N uptake was also observed in the following oat (Avena sativa L.) crop. The highest mulch rate (2×) produced higher N uptake and grain yield of second-year oat compared with ammonium nitrate treatments. N use efficiency of mulch-supplied N by two crops over 2 yr [calculated as (treatment N uptake – control N uptake)/total N added] was between 11 and 68%. Mulch usually suppressed annual weeds, with greater suppression with late- than early-applied mulch. Increased soil moisture conservation was observed with high mulch rates (≥ 4.3 t ha-1) at three sites. Alfalfa mulch holds promise for low-input cropping systems when used on wheat at the 2× rates. Key words: Legume N, low-input farming, integrated weed management, wheat protein


Sign in / Sign up

Export Citation Format

Share Document