scholarly journals Ultrastructure and Differentiation In Chara Sp. III. Formation of the Antheridium

1968 ◽  
Vol 21 (2) ◽  
pp. 255 ◽  
Author(s):  
JD Pickett-Heaps

The formation of the antheridium from an enlarged nodal cell is described. After a basal cell has been cut off, precisely oriented mitoses divide the antheridial cell initially into octants; then follow two periclinal divisions in each octant. The outer layer of cells become the shield cells, the middle form the manubria, and the inner capitula cells divide further to produce secondary capitula and ultimately the spermatogenous threads. The shield cells become compartmentalized during enlargement by ingrowths in the wall which finally form a very distinctive pattern. Microtubules are associated with the regions of wall deposition. Plastids in the shields accumulate large numbers of globuli, and this is probably associated with the orange pigmentation they acquire. Large amounts of material seem to be secreted into the antheridia by the manubria; this material is formed within large vesicles which are apparently discharged through the plasmalemma. In the young capitula, a characteristic, highly organized grouping of many cytoplasmic microtubules forms a band which appears to wind through the cytoplasm; its significance and functions are obscure. Presumptive "spherosomes" are present in large numbers in these and spermatogenous cells. The spherosomes and lipid-like inclusions are very frequently coated with membranes of the endoplasmic reticulum.

Author(s):  
Roy Skidmore

The long-necked secretory cells in Onchidoris muricata are distributed in the anterior sole of the foot. These cells are interspersed among ciliated columnar and conical cells as well as short-necked secretory gland cells. The long-necked cells contribute a significant amount of mucoid materials to the slime on which the nudibranch travels. The body of these cells is found in the subepidermal tissues. A long process extends across the basal lamina and in between cells of the epidermis to the surface of the foot. The secretory granules travel along the process and their contents are expelled by exocytosis at the foot surface.The contents of the cell body include the nucleus, some endoplasmic reticulum, and an extensive Golgi body with large numbers of secretory vesicles (Fig. 1). The secretory vesicles are membrane bound and contain a fibrillar matrix. At high magnification the similarity of the contents in the Golgi saccules and the secretory vesicles becomes apparent (Fig. 2).


Author(s):  
Thomas T.F. Huang ◽  
Patricia G. Calarco

The stage specific appearance of a retravirus, termed the Intracisternal A particle (IAP) is a normal feature of early preimplantation development. To date, all feral and laboratory strains of Mus musculus and even Asian species such as Mus cervicolor and Mus pahari express the particles during the 2-8 cell stages. IAP form by budding into the endoplasmic reticulum and appear singly or as groups of donut-shaped particles within the cisternae (fig. 1). IAP are also produced in large numbers in several neoplastic cells such as certain plasmacytomas and rhabdomyosarcomas. The role of IAP, either in normal development or in neoplastic behavior, is unknown.


1976 ◽  
Vol 69 (1) ◽  
pp. 106-125 ◽  
Author(s):  
D L Brown ◽  
A Massalski ◽  
R Patenaude

The organization of microtubular systems in the quadriflagellate unicell Polytomella agilis has been reconstructed by electron microscopy of serial sections, and the overall arrangement confirmed by immunofluorescent staining using antiserum directed against chick brain tubulin. The basal bodies of the four flagella are shown to be linked in two pairs of short fibers. Light microscopy of swimming cells indicates that the flagella beat in two synchronous pairs, with each pair exhibiting a breast-stroke-like motion. Two structurally distinct flagellar rootlets, one consisting of four microtubules in a 3 over 1 pattern and the other of a striated fiber over two microtubules, terminate between adjacent basal bodies. These rootlets diverge from the basal body region and extend toward the cell posterior, passing just beneath the plasma membrane. Near the anterior part of the cell, all eight rootlets serve as attachment sites for large numbers of cytoplasmic microtubules which occur in a single row around the circumference of the cell and closely parallel the cell shape. It is suggested that the flagellar rootless may function in controlling the patterning and the direction of cytoplasmic microtubule assembly. The occurrence of similar rootlet structures in other flagellates is briefly reviewed.


1981 ◽  
Vol 49 (1) ◽  
pp. 401-409
Author(s):  
A.W. Coleman ◽  
P. Heywood

The arrangement and ultrastructure of chloroplasts is described for the Chloromonadophycean algae gonyostomum semen Diesing and Vacuolaria virescens Cienkowsky. The chloroplasts are present in large numbers and are discoid structures approximately 3–4 micrometer in length by 2–3 micrometer in width. In Gonyostomum semen the chloroplasts form a single layer immediately interior to the cell membrane; frequently their longitudinal axis parallels the longitudinal axis of the cell. The chloroplasts in Vacuolaria virescens are more than I layer deep and do not appear to be preferentially oriented. In both organisms, chloroplast bands usually consist of 3 apposed thylakoids, although fusion and interconnections between adjacent bands frequently occur. External to the girdle band (the outermost thylakoids) is the chloroplast envelope. This is bounded by endoplasmic reticulum but there is no immediately apparent continuity between this endoplasmic reticulum and the nuclear envelope. Electron-dense spheres in the chloroplast stroma are thought to be lipid food reserve. Ring-shaped electron-translucent regions in the chloroplast contain chloroplast DNA. The DNA is distributed along this ring in an uneven fashion and, when stained, resembles a string of beads. Each plastid has I ring, and the ring is unbroken in the intact plastid.


1961 ◽  
Vol 9 (2) ◽  
pp. 353-368 ◽  
Author(s):  
D. F. Parsons ◽  
E. B. Darden ◽  
D. L. Lindsley ◽  
Guthrie T. Pratt

An electron microscope study was made of a series of transplanted MPC-1 plasma-cell tumors carried by BALB/c mice. Large numbers of particles similar in morphology to virus particles were present inside the endoplasmic reticulum of tumor plasma cells. Very few particles were seen outside the cells or in ultracentrifuged preparations of the plasma or ascites fluid. In very early tumors particles were occasionally seen free in the cytoplasm adjacent to finely granular material. In general, the distribution of these particles inside endoplasmic reticulum is similar in early and late tumors. A few transplanted X5563 tumors of C3H mice were also examined. Large numbers of particles were found in the region of the Golgi apparatus in late X5663 tumors. A newly described cytoplasmic structure of plasma cells, here called a "granular body," appears to be associated with the formation of the particles. Particles present in MPC-1 tumors are exclusively of a doughnut form, whereas some of those in the inclusions of the late X5563 tumors show a dense center. Normal plasma cells, produced by inoculation of a modified Freund adjuvant into BALB/c mice. have been compared morphologically with tumor plasma cells of both tumor lines.


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 320 ◽  
Author(s):  
Małgorzata Kozieradzka-Kiszkurno ◽  
Daria Majcher ◽  
Emilia Brzezicka ◽  
Joanna Rojek ◽  
Justyna Wróbel-Marek ◽  
...  

The suspensor in the majority of angiosperms is an evolutionally conserved embryonic structure functioning as a conduit that connects ovule tissues with the embryo proper for nutrients and growth factors flux. This is the first study serving the purpose of investigating the correlation between suspensor types and plasmodesmata (PD), by the ultrastructure of this organ in respect of its full development. The special attention is paid to PD in representatives of Crassulaceae genera: Sedum, Aeonium, Monanthes, Aichryson and Echeveria. The contribution of the suspensor in transporting nutrients to the embryo was confirmed by the basal cell structure of the suspensor which produced, on the micropylar side of all genera investigated, a branched haustorium protruding into the surrounding ovular tissue and with wall ingrowths typically associated with cell transfer. The cytoplasm of the basal cell was rich in endoplasmic reticulum, mitochondria, dictyosomes, specialized plastids, microtubules, microbodies and lipid droplets. The basal cell sustained a symplasmic connection with endosperm and neighboring suspensor cells. Our results indicated the dependence of PD ultrastructure on the type of suspensor development: (i) simple PD are assigned to an uniseriate filamentous suspensor and (ii) PD with an electron-dense material are formed in a multiseriate suspensor. The occurrence of only one or both types of PD seems to be specific for the species but not for the genus. Indeed, in the two tested species of Sedum (with the distinct uniseriate/multiseriate suspensors), a diversity in the structure of PD depends on the developmental pattern of the suspensor. In all other genera (with the multiseriate type of development of the suspensor), the one type of electron-dense PD was observed.


1965 ◽  
Vol 43 (11) ◽  
pp. 1401-1407 ◽  
Author(s):  
James Cronshaw

Cambial derivatives of Acer rubrum have been examined at stages of their differentiation following fixation in 3% or 6% glutaraldehyde with a post fixation in osmium tetroxide. At early stages of development numerous free ribosomes are present in the cytoplasm, and elements of the endoplasmic reticulum tend to align themselves parallel to the cell surfaces. The plasma membrane is closely applied to the cell walls. During differentiation a complex system of cytoplasmic microtubules develops in the peripheral cytoplasm. These microtubules are oriented, mirroring the orientation of the most recently deposited microfibrils of the cell wall. The microtubules form a steep helix in the peripheral cytoplasm at the time of deposition of the middle layer of the secondary wall. During differentiation the free ribosomes disappear from the cytoplasm and numerous elements of rough endoplasmic reticulum with associated polyribosomes become more evident. In many cases the endoplasmic reticulum is associated with the cell surface. During the later stages of differentiation there are numerous inclusions between the cell wall and the plasma membrane.


1989 ◽  
Vol 67 (9) ◽  
pp. 2669-2677 ◽  
Author(s):  
Mark D. Lazzaro ◽  
William W. Thomson

The acid-secreting trichomes of chickpea (Cicer arietinum L.) were composed of 18 cells, including 1 basal cell, 3 elongate stalk cells, and 14 head cells. A subcuticular secretion chamber with cuticular pores was present above the head cells at the trichome tip. The basal and stalk cells had large central vacuoles, endoplasmic reticulum, mitochondria, and small vacuoles. In the stalk cells, these small vacuoles were aligned along microtubles extending from the bottom to the top of the cells. Head cells had more dense cytoplasm than stalk cells and also had numerous mitochondria and small vacuoles. A labyrinth of tubules and vesicles at the edges of the head cells contained granular material similar to that observed in the extraplasmic space of the head cell and in the secretion chamber. In older head cells, the tubules were thinner and lacked granular material, the cells contained sequestering membranes and vacuoles, and calcium oxalate crystals were observed in the extraplasmic space. Plasmodesmata were not observed between the basal cell and the surrounding mesophyll cells, although numerous plasmodesmata with associated desmotubules and endoplasmic reticulum connected the trichome cells. Chloroplasts were not observed in the head or stalk cells, whereas the basal cell had small chloroplasts with reduced thylakoid networks and the mesophyll cells had large chloroplasts with well-developed thylakoids that may provide the fixed carbon for organic-acid secretion.


1967 ◽  
Vol 2 (3) ◽  
pp. 411-418
Author(s):  
IRENE MANTON

The normal form of the species has been compared with a deviant form and the processes of scale production in both more fully studied. The deviation is shown to be genetically based, possibly a mutation, of which the main structural expression is loss of capacity to develop the normal outer layer of material on each scale. The large scales also lack rims, a flange on the back giving a spurious resemblance to an inverted rim. A significant factor in determining orientation of the large scales appears to be a deposit of amorphous material on the morphologically outer side, which though much reduced in the deviant strain is still present. Orientation of scales in both strains of the species is therefore basically identical and independent of overall shape, though it is structurally determined before liberation from the parent Golgi cisternae. Changes in the latter have been traced up to and including the act of liberation of the contents to the exterior. This takes place near to the flagellar bases and there are some indications that participation by endoplasmic reticulum may be involved.


1984 ◽  
Vol 72 (1) ◽  
pp. 307-319
Author(s):  
S.G. Delivopoulos ◽  
P. Kugrens

The fusion cell in Faucheocolax attenuata Setch. is a highly lobed, thick-walled, multinucleate and irregularly shaped cell originating from the basal cell of the auxiliary cell branch. The formation of the fusion cell occurs by an incorporation of vegetative cells into the basal cell, after dissolution of septal plugs between these cell types. Thus the fusion cell is a syncytium containing only haploid nuclei, as well as unusual mitochondria and plastids. Mitochondria lack cristae and instead contain a tubular helical structure. Plastids are atypical with regard to thylakoid organization in red algae, because they lack the peripheral thylakoid and their photosynthetic thylakoids are aggregated to one side. In addition, they contain large osmiophilic bodies. Nuclear envelopes appear to produce large quantities of membrane cisternae. Floridean starch is absent and the cytoplasm contains few ribosomes. The plasma membrane is irregular and endoplasmic reticulum cisternae are situated parallel to it. Bundles of putative microfilaments were commonly found in nuclei and the cytoplasm. Structural evidence does not support any meristematic, nutritive or secretory functions previously ascribed to fusion cells in other genera.


Sign in / Sign up

Export Citation Format

Share Document