Restore and sequester: estimating biomass in native Australian woodland ecosystems for their carbon-funded restoration

2011 ◽  
Vol 59 (7) ◽  
pp. 640 ◽  
Author(s):  
J. H. Jonson ◽  
D. Freudenberger

In the south-western region of Australia, allometric relationships between tree dimensional measurements and total tree biomass were developed for estimating carbon sequestered in native eucalypt woodlands. A total of 71 trees representing eight local native species from three genera were destructively sampled. Within this sample set, below ground measurements were included for 51 trees, enabling the development of allometric equations for total biomass applicable to small, medium, and large native trees. A diversity of tree dimensions were recorded and regressed against biomass, including stem diameter at 130 cm (DBH), stem diameter at ground level, stem diameter at 10 cm, stem diameter at 30 cm, total tree height, height of canopy break and mean canopy diameter. DBH was consistently highly correlated with above ground, below ground and total biomass. However, measurements of stem diameters at 0, 10 and 30 cm, and mean canopy diameter often displayed equivalent and at times greater correlation with tree biomass. Multi-species allometric equations were also developed, including ‘Mallee growth form’ and ‘all-eucalypt’ regressions. These equations were then applied to field inventory data collected from three locally dominant woodland types and eucalypt dominated environmental plantings to create robust relationships between biomass and stand basal area. This study contributes the predictive equations required to accurately quantify the carbon sequestered in native woodland ecosystems in the low rainfall region of south-western Australia.

2012 ◽  
Vol 9 (8) ◽  
pp. 3381-3403 ◽  
Author(s):  
T. R. Feldpausch ◽  
J. Lloyd ◽  
S. L. Lewis ◽  
R. J. W. Brienen ◽  
M. Gloor ◽  
...  

Abstract. Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (≤40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha−1 (range 6.6 to 112.4) to 8.0 Mg ha−1 (−2.5 to 23.0). For all plots, aboveground live biomass was −52.2 Mg ha−1 (−82.0 to −20.3 bootstrapped 95% CI), or 13%, lower when including H estimates, with the greatest relative reductions in estimated biomass in forests of the Brazilian Shield, east Africa, and Australia, and relatively little change in the Guiana Shield, central Africa and southeast Asia. Appreciably different stand structure was observed among regions across the tropical continents, with some storing significantly more biomass in small diameter stems, which affects selection of the best height models to reduce uncertainty and biomass reductions due to H. After accounting for variation in H, total biomass per hectare is greatest in Australia, the Guiana Shield, Asia, central and east Africa, and lowest in east-central Amazonia, W. Africa, W. Amazonia, and the Brazilian Shield (descending order). Thus, if tropical forests span 1668 million km2 and store 285 Pg C (estimate including H), then applying our regional relationships implies that carbon storage is overestimated by 35 Pg C (31–39 bootstrapped 95% CI) if H is ignored, assuming that the sampled plots are an unbiased statistical representation of all tropical forest in terms of biomass and height factors. Our results show that tree H is an important allometric factor that needs to be included in future forest biomass estimates to reduce error in estimates of tropical carbon stocks and emissions due to deforestation.


2018 ◽  
Vol 53 (10) ◽  
pp. 1109-1118
Author(s):  
Reginaldo Antonio Medeiros ◽  
Haroldo Nogueira de Paiva ◽  
Flávio Siqueira D’Ávila ◽  
Helio Garcia Leite

Abstract: The objective of this work was to evaluate the growth and yield of teak (Tectona grandis) stands at different spacing and in different soil classes. Twelve spacing were evaluated in an Inceptisol and Oxisol, in plots with an area of 1,505 or 1,548 m2, arranged in a completely randomized design with nine replicates. The teak trees were measured at 26, 42, 50, and 78 months of age. Total tree height was less affected by spacing. Mean square diameter was greater in wider spacing, whereas basal area and total volume with bark were greater in closer spacing. An increase in volume with bark per tree was observed with the increase of useful area per plant. For teak trees, growth stagnation happens earlier, the growth rate is higher in closer spacing, and the plants grow more in the Inceptisol than in the Oxisol.


2016 ◽  
Vol 21 (1) ◽  
pp. 65-70
Author(s):  
Smrita Acharya ◽  
Udhab Raj Khadka

Landslide causes massive loss of lives and properties along with intangible losses in mountainous regions. Yet such intangible losses in ecosystems are rarely considered. The present study assesses the tree biomass lost due to Jure landslide in Sindhupalchowk that destroyed 71 hectare of land. Altogether, 12 plots (250 m2) were sampled through systematic and purposive sampling technique. The total tree biomass was estimated using allometric equation. The study recorded 21 tree species in which Schimawallichiii (Korth.), Lagerstroemia parviflora (Roxb.), Shorea robusta (Gaertn.), Alnus nepalensis (D. Don), Phyllanthus emblica (Linn.) and Celtius australis (Linn.) were dominant. Schima wallichiii had the highest density (320 individual ha-1) and frequency (92%). The total biomass of tree species was 216 ton ha-1 in which Schima wallichiii constituted the highest total tree biomass (82 ton ha-1). In 71 ha landslide area, the landslide caused loss of 15,336 tons of total tree biomass, which equals to 56,283 tons CO2 equivalents. These findings are relevant for assessing post-landslide impacts on the mountain environment. Furthermore, to reduce carbon emissions resulting from forest loss, mitigation of landslide is crucial.Journal of Institute of Science and TechnologyVol. 21, No. 1, 2016,Page: 65-70


2013 ◽  
Vol 43 (2) ◽  
pp. 149-158 ◽  
Author(s):  
Enrique Jiménez ◽  
José Antonio Vega ◽  
José María Fernández-Alonso ◽  
Daniel Vega-Nieva ◽  
Juan Gabriel Álvarez-González ◽  
...  

Adequate quantification of canopy fuel load and canopy bulk density is required for assessment of the susceptibility of forest stands to crown fire and evaluation of silvicultural treatments aimed at reducing the risk of crowning. The use of tree biomass equations and vertical profile distributions of crown fuels provide the most accurate estimates of the canopy fuel characteristics. In this study, 100 pole-size maritime pine (Pinus pinaster Aiton) trees were destructively sampled in five different sites, covering a wide range of its geographical distribution in the Iberian Peninsula. To estimate crown fuel mass, allometric equations were fitted separately for needles, twigs, and fuel available for crown fire. Models were also fitted to characterize the vertical fuel distributions as a function of tree height. All models were fitted simultaneously to guarantee additivity among tree biomass components, and corrections were also made for heterocedasticity and autocorrelation. Diameter at breast height was the best explanatory variable for all the allometric models. The vertical distribution of crown biomass fractions along tree height depended on the crown size and tree dominance. The system of equations provides a good balance between accurate predictions and low data requirements, allowing quantification of canopy fuel characteristics at stand level.


2017 ◽  
Vol 63 (3) ◽  
pp. 250-260 ◽  
Author(s):  
Manuel Arias-Rodil ◽  
Ulises Diéguez-Aranda ◽  
Harold E. Burkhart

Jurnal Wasian ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 75-86
Author(s):  
Andes Rozak ◽  
◽  
Destri Destri ◽  
Zaenal Mutaqien

Indonesia is estimated to have 14,5 million hectares of karst areas. The characteristic of karst vegetation is specific, one of which is the dominance of small trees. With all of the potency, their vegetation acts as a significant carbon sequester and store it in biomass. This study aims to estimate and discuss biomass estimation in the karst forest within the Nature Recreational Park of Beriat, a protected area in South Sorong, West Papua. A total of 28 plots were made in the forest using the purposive random sampling method. Tree biomass (DBH ≥10 cm) was estimated using five different allometric equations. The results showed that the biomass was estimated at ca. 264 Mg ha-1 (95 % CI: 135-454 Mg ha-1). While small trees (DBH 10 – 30 cm) only contribute 30 % of the total biomass, about 38 % of the biomass is the contribution of large trees (DBH >50 cm), where Pometia pinnata contributes ca. 39 % of the biomass at plot-level. The use of various allometric equations results in different biomass estimates and biases with deviations ranged from -14.78 % to +17.02 % compared to the reference equation. Therefore, the selection of allometric equations used must be considered carefully to reduce uncertainties in biomass estimation.


2019 ◽  
Vol 49 (2) ◽  
pp. 81-90 ◽  
Author(s):  
Reinaldo Imbrozio BARBOSA ◽  
Perla Natalia RAMÍREZ-NARVÁEZ ◽  
Philip Martin FEARNSIDE ◽  
Carlos Darwin Angulo VILLACORTA ◽  
Lidiany Camila da Silva CARVALHO

ABSTRACT Allometric models defining the relationship between stem diameter and total tree height in the Amazon basin are important because they refine the estimates of tree carbon stocks and flow in the region. This study tests different allometric models to estimate the total tree height from the stem diameter in an ecotone zone between ombrophilous and seasonal forests in the Brazilian state of Roraima, in northern Amazonia. Stem diameter and total height were measured directly in 65 recently fallen trees (live or dead). Linear and nonlinear regressions were tested to represent the D:H relation in this specific ecotone zone. Criteria for model selection were the standard error of the estimate (Syx) and the adjusted coefficient of determination (R²adj), complemented by the Akaike Information Criterion (AIC). Analysis of residuals of the most parsimonious nonlinear models showed a tendency to overestimate the total tree height for trees in the 20-40 cm diameter range. Application of our best fitted model (Michaelis-Menten) indicated that previously published general equations for the tropics that use diameter as the independent variable can either overestimate tree height in the study area by 10-29% (Weibull models) or underestimate it by 8% (climate-based models). We concluded that our site-specific model can be used in the ecotone forests studied in Roraima because it realistically reflects the local biometric relationships between stem diameter and total tree height. Studies need to be expanded in peripheral areas of northern Amazonia in order to reduce uncertainties in biomass and carbon estimates that use the tree height as a variable in general models.


2018 ◽  
Vol 48 (2) ◽  
pp. 85-92 ◽  
Author(s):  
Cecilia P.I.B. WOORTMANN ◽  
Niro HIGUCHI ◽  
Joaquim dos SANTOS ◽  
Roseana P. da SILVA

ABSTRACT The Amazon forest comprises many different forest types, amongst them are campinas and campinaranas, which occur on Amazonian sandy soils, representing 2.65% of Amazonian territory. An understanding of the ecology and quantification of the environmental goods and services of campinaranas is key to their conservation. Based on a direct method to estimate biomass and carbon content of campinarana, we harvested and weighted 89 trees and other forest components in ten randomly allocated plots of 100 m2 (10 x 10 m) and 11 additional trees outside the plots. The data allowed us to describe how biomass is distributed amongst campinarana vegetation and amongst tree compartments. We developed allometric equations to estimate the total, above- and below-ground biomass and carbon stock of this forest type. We used a Weibull function to test if the diameter distribution of the individual trees sampled was consistent with the diameter distribution of the forest type. We also tested if terra-firme forest biomass equations could be used to estimate campinarana biomass, and whether a correction factor based on dominant height would reduce the error from these estimates. Allometric equations are considered to be the most reliable and rapid method for calculating forest biomass, and are used in forest management and climate change studies. These are the first total biomass equations developed for central Amazonian campinaranas. The best fitted allometric equation for total fresh biomass was: ln (Total Biomass) = -1.373 + 2.546 * ln DBH (R ² = 0.98, Sxy% = 4.19%).


2019 ◽  
Vol 49 (1) ◽  
pp. 27-40 ◽  
Author(s):  
Dehai Zhao ◽  
James Westfall ◽  
John W. Coulston ◽  
Thomas B. Lynch ◽  
Bronson P. Bullock ◽  
...  

Both aggregative and disaggregative strategies were used to develop additive nonlinear biomass equations for slash pine (Pinus elliottii Engelm. var. elliottii) trees in the southeastern United States. In the aggregative approach, the total tree biomass equation was specified by aggregating the expectations of component biomass models, and their parameters were estimated by jointly fitting all component and total biomass equations using weighted nonlinear seemingly unrelated regression (NSUR) (SUR1) or by jointly fitting component biomass equations using weighted NSUR (SUR2). In an alternative disaggregative approach (DRM), the biomass component proportions were modeled using Dirichlet regression, and the estimated total tree biomass was disaggregated into biomass components based on their estimated proportions. There was no single system to predict biomass that was best for all components and total tree biomass. The ranking of the three systems based on an array of fit statistics followed the order of SUR2 > SUR1 > DRM. All three systems provided more accurate biomass predictions than previously published equations.


2004 ◽  
Vol 18 (2) ◽  
pp. 369-374 ◽  
Author(s):  
Luciana F. Alves ◽  
Fernando R. Martins ◽  
Flavio A.M. Santos

The stem allometry (stem diameter vs. tree height) of a Neotropical palm (Euterpe edulis) found in rain and seasonal forest of Southeastern Brazil was examined. Observed height-diameter relationships along the stem (diameter at ground level, (dgl), and diameter at breast height (dbh) were compared to three theoretical stability mechanical models: elastic similarity, stress similarity and geometric similarity. Slopes of log-transformed height-diameter relationships did not lie near those predicted by any stability mechanical models. Significant differences in stem allometry were found when comparing dgl to dbh, suggesting greater increase in dbh with height. The relationship between stability safety factor (SSF) and palm height showed that both dgl and dbh were found to be above McMahon's theoretical buckling limit for dicotyledonous trees, but some individuals approached this limit in relation to dbh. Despite displaying a similar decreasing pattern of SSF with height, differences found in SSF along the stem - greater SSF for dgl when compared to dbh - indicate that the risk of mechanism failure in palms depends upon the size and varies along the stem. Distinct allometric relationships along the stem obtained for Euterpe edulis may be reflecting possible differences in stem design and growth strategies.


Sign in / Sign up

Export Citation Format

Share Document