Fire responses and survival strategies of mistletoes (Loranthaceae) in an arid environment in Western Australia

2011 ◽  
Vol 59 (6) ◽  
pp. 533 ◽  
Author(s):  
A. N. Start

Between 1982 and 2008, data were collected on Loranthaceous mistletoes, their hosts and the fire responses of both, in and adjacent to the Pilbara, an arid region in Western Australia where hummock grasslands (dominated by Triodia sp. R.Br., Poaceae) and mulga woodlands (dominated by Acacia aneura Benth., Mimosaceae) are widespread. Hummock grasslands are fire prone and highly flammable. Mulga woodlands are less so, except in an inter-zone where Triodia in the understorey may be sufficiently dense to carry fire. The foliage (and fresh seed) of all mistletoe species was killed if scorched. Moreover, none had any means of long-term, in situ seed-storage. Three fire-survival strategies were observed across the 16 mistletoe taxa. One species (two varieties) was a resprouter. The other 14 were obligate seeders. Post-fire regeneration of those taxa depended on fresh seed being imported and deposited in suitable host canopies by birds. Twelve of them reduced fire risk by varying degrees of host specificity, favouring hosts that grew in fire-sheltered sites. However, two species had very low host specificity and grew on fire-vulnerable hosts in fire-prone hummock grasslands. Their low host specificity increased the likelihood that imported seed would be deposited on suitable hosts. Since pastoral settlement, fire regimes have changed and current regimes are eroding many mistletoe populations. None of the species occurring in the study area is threatened at bioregional or National levels. Nevertheless, the outlook is bleak for mistletoes growing in areas dominated by hummock grasslands, subregional extinction is likely and there are broader implications for biodiversity.

2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.


Author(s):  
Yao Wang

According to existing research results, fire risk makes a significant contribution to the total risk of a nuclear power plant (NPP). So fire probabilistic safety analysis (PSA) for NPPs is becoming more and more important in recent years. How to perform human reliability analysis (HRA) which is an essential part of PSA is therefore being paid more and more attention in fire PSA. This paper describes the characteristics and special considerations of HRA in fire PSA, and demonstrates in fire PSA how to use SPAR-H method which is so-called an advanced second-generation HRA method and is being widely used in PSA for Chinese NPPs. The study results can be a reference for other HRA analysts to use SPAR-H method in fire PSA models or other PSA models in Chinese NPPs or the world-wide nuclear industry.


2011 ◽  
Vol 75 (1) ◽  
pp. 125-137 ◽  
Author(s):  
Elizabeth A. Lynch ◽  
Sara C. Hotchkiss ◽  
Randy Calcote

AbstractWe show how sedimentary charcoal records from multiple sites within a single landscape can be used to compare fire histories and reveal small scale patterns in fire regimes. Our objective is to develop strategies for classifying and comparing late-Holocene charcoal records in Midwestern oak- and pine-dominated sand plain ecosystems where fire regimes include a mix of surface and crown fires. Using standard techniques for the analysis of charcoal from lake sediments, we compiled 1000- to 4000-yr-long records of charcoal accumulation and charcoal peak frequencies from 10 small lakes across a sand plain in northwestern Wisconsin. We used cluster analysis to identify six types of charcoal signatures that differ in their charcoal influx rates, amount of grass charcoal, and frequency and magnitude of charcoal peaks. The charcoal records demonstrate that while fire histories vary among sites, there are regional patterns in the occurrence of charcoal signature types that are consistent with expected differences in fire regimes based on regional climate and vegetation reconstructions. The fire histories also show periods of regional change in charcoal signatures occurring during times of regional climate changes at ~700, 1000, and 3500 cal yr BP.


2018 ◽  
Vol 9 (3) ◽  
pp. 306-318 ◽  
Author(s):  
Emily Ying Yang Chan ◽  
Holly Ching Yu Lam ◽  
Phoebe Pui Wun Chung ◽  
Zhe Huang ◽  
Tony Ka Chun Yung ◽  
...  

2018 ◽  
Vol 373 (1761) ◽  
pp. 20170443 ◽  
Author(s):  
Christopher N. Johnson ◽  
Lynda D. Prior ◽  
Sally Archibald ◽  
Helen M. Poulos ◽  
Andrew M. Barton ◽  
...  

Large vertebrates affect fire regimes in several ways: by consuming plant matter that would otherwise accumulate as fuel; by controlling and varying the density of vegetation; and by engineering the soil and litter layer. These processes can regulate the frequency, intensity and extent of fire. The evidence for these effects is strongest in environments with intermediate rainfall, warm temperatures and graminoid-dominated ground vegetation. Probably, extinction of Quaternary megafauna triggered increased biomass burning in many such environments. Recent and continuing declines of large vertebrates are likely to be significant contributors to changes in fire regimes and vegetation that are currently being experienced in many parts of the world. To date, rewilding projects that aim to restore large herbivores have paid little attention to the value of large animals in moderating fire regimes. Rewilding potentially offers a powerful tool for managing the risks of wildfire and its impacts on natural and human values. This article is part of the theme issue ‘Trophic rewilding: consequences for ecosystems under global change’.


2021 ◽  
Author(s):  
Yicheng Shen ◽  
Luke Sweeney ◽  
Mengmeng Liu ◽  
Jose Antonio Lopez Saez ◽  
Sebastián Pérez-Díaz ◽  
...  

Abstract. Charcoal accumulated in lake, bog or other anoxic sediments through time has been used to document the geographical patterns in changes in fire regimes. Such reconstructions are useful to explore the impact of climate and vegetation changes on fire during periods when the human influence was less prevalent than today. However, charcoal records only provide semi-quantitative estimates of change in biomass burning. Here we derive quantitative estimates of burnt area from vegetation data in two stages. First, we relate the modern charcoal abundance to burnt area using a conversion factor derived from a generalized linear model of burnt area probability based on eight environmental predictors. Then, we establish the relationship between fossil pollen assemblages and burnt area using Tolerance-weighted Weighted Averaging Partial Least-Squares with sampling frequency correction (fxTWA-PLS). We test this approach using the Iberian Peninsula as a case study because it is a fire-prone region with abundant pollen and charcoal records covering the Holocene. We derive the vegetation-burnt area relationship using the 29 records that have both modern and fossil charcoal and pollen data, and then reconstruct palaeo-burnt area for the 114 records with Holocene pollen records. The pollen data predict charcoal abundances through time relatively well (R2 = 0.47) and the changes in reconstructed burnt area are synchronous with known climate changes through the Holocene. This new method opens up the possibility of reconstructing changes in fire regimes quantitatively from pollen records, which are far more numerous than charcoal records.


2019 ◽  
pp. 31
Author(s):  
Catarina Romão Sequeira ◽  
Cristina Montiel-Molina ◽  
Francisco Castro Rego

The Iberian Peninsula has a long history of fire, as the Central Mountain System, from the Estrela massif in Portugal to the Ayllón massif in Spain, is a major fire-prone area. Despite being part of the same natural region, there are different environmental, political and socio-economic contexts at either end, which might have led to distinct human causes of wildfires and associated fire regimes. The hypothesis for this research lies in the historical long-term relationship between wildfire risks and fire use practices within a context of landscape dynamics. In addition to conducting an analysis of the statistical period, a spatial and temporal multiscale approach was taken by reconstructing the historical record of prestatistical fires and land management history at both ends of the Central Mountain System. The main result is the different structural causes of wildland fires at either end of the Central Mountain System, with human factors being more important than environmental factors in determining the fire regimes in both contexts. The study shows that the development of the fire regime was non-linear in the nineteenth and twentieth centuries, due to broader local human context factors which led to a shift in fire-use practices.


2019 ◽  
Vol 45 (2) ◽  
pp. 423
Author(s):  
T. Lasanta

The mountains of Europe, especially in the Mediterranean, have undergone a significant process of revegetation since the mid-20th century with the spread of shrublands and forests in succession stages. This leads to negative effects (degradation of pasture, accumulation of biomass with the subsequent increase in fire risk, loss or trivialized of cultural landscapes, etc.) and other positive ones (greater rewilding of landscapes, recovery of forest life, more CO2 fixation, less soil erosion, etc.). Thus, two alternatives must be put forward: either allow the rewilding process to continue, or intervene in the region to reduce the negative effects of revegetation.In this paper, the literature forms the base for a discussion on the main interventions in the territory: extensive livestock grazing, combined with prescribed fires and shrub clearing. Prescribed fires are found to be insufficient to control the spread of shrublands, and in some cases promotes its regrowth (Echinospartum horridum), as well as degrading the pasture land and increasing soil erosion. On the other hand, clearing shrubland has positive effects: a reduction in wildfires, increased livestock numbers, and improved indicators of heterogeneity and fragmentation of the landscape.


Sign in / Sign up

Export Citation Format

Share Document