A genetic, demographic and habitat evaluation of an endangered ephemeral species Xerothamnella herbacea from Australia’s Brigalow belt

2017 ◽  
Vol 65 (1) ◽  
pp. 38 ◽  
Author(s):  
Alison Shapcott ◽  
Robert W. Lamont ◽  
Gabriel Conroy ◽  
Heather E. James ◽  
Yoko Shimizu-Kimura

Little remains of the Brigalow (Acacia harpophylla F.Muell. ex Benth.) woodlands of Australia, primarily due to land clearing for grazing and agriculture. Many threatened species in this region are poorly studied, and the life history traits of some herbaceous species such as ephemeral shoot systems, mean that conservation assessments are difficult. Recent gas pipeline developments have led to an increased need to understand the ecology and genetics of such taxa, in order to advise offset and translocation activities. Xerothamnella herbacea R.Baker is an endangered ephemeral herbaceous species from the Brigalow Belt region, which dies back during prolonged dry conditions. The aim of this study was to map the extent of potentially suitable habitat of this species, including determination of population extent within existing protected area estate. The species population sizes, reproductive activity and evidence of clonal spread, as well as the levels of genetic diversity and inbreeding, across the species range were also assessed to provide guidance for potential translocation and offsetting programs. The genetic results were related to the species suitable habitat distribution to test whether historic or recent habitat fragmentation most explains genetic patterns in this species. Most of the populations of this species were found to be small with less than 100 plants. The species appears not to be limited by its reproductive output, suggesting other factors may limit its abundance. The species populations have moderate to low genetic diversity suggesting the species is genetically viable in the medium term but are inbred which may be partially due to vegetative spread. Geographic proximity does not predict genetic similarity of populations and diversity is not correlated with population size. The results indicate potential translocation or offsetting programs need to account for genetic relationships in their planning. Resprouting ability has potentially assisted the species to slow the pace of genetic diversity loss due to anthropogenic fragmentation.

2005 ◽  
Vol 54 (1-6) ◽  
pp. 206-210 ◽  
Author(s):  
M. K. Huh ◽  
H. W. Huh

Abstract Genus Acanthopanax is a long-lived woody species that is primarily distributed throughout Asia. Many species of this genus are regarded as medically and ecologically important. We evaluated a representative sample of the nine taxa with allozymes to estimate genetic relationships within the genus. As some Korean populations were isolated and patchily distributed, they exhibited a low level of genetic diversity. The narrow geographic ranges, artificial distribution of habitats, and small population sizes are proposed as factors contributing to low genetic diversity. Acanthopanax seoulense was similar to A. sessiliflorus, while a cluster of the A. rufinerve population is distant from any other species. A. senticosus is closely related to A. seoulense and A. sessiliflorus, whereas other species (A. koreanum) are more distinct from the Korean populations. Korean species are clustered together and clearly differentiated from the Chinese and Russian Acanthopanax taxa, genus Acanthopanax


2014 ◽  
Vol 56 (1) ◽  
pp. 16-27 ◽  
Author(s):  
Hong Liao ◽  
Huachun Guo

Abstract The genetic diversity of potato cultivars collected from Yunnan Province was evaluated using 24 pairs of SSR markers. SSR analysis of 24 pairs of primers showed varying degrees of polymorphism among the 85 cultivars: 297 of the 304 bands were polymorphic. The primers yielded between 5 (STM2028) and 19 (StI029) bands (mean 12). The ratio of polymorphic bands ranged from 83.33% to 100% (mean 97.75%). Polymorphism information content (PIC) varied from 69.31% to 93.67% (mean 86.47%). Genetic similarity ranged from 0.5987 to 0.7632, indicating relatively low genetic diversity in the potato cultivars from Yunnan Province. Cluster analysis by UPGMA and PCA clearly delineated the genetic relationships of all cultivars; 83 of the 85 cultivars could be discriminated by only two pairs of primers, STM0030 and STM1104. The high polymorphism and good resolution of the primers used in this study make them good tools for discriminating potato cultivars.


2021 ◽  
Author(s):  
Tomáš Vlasta ◽  
Zuzana Műnzbergová

Abstract Loss of genetic diversity is expected to be a common reason for decline of populations of many rare species. To what extent this is true for populations at the range periphery remains to be explored. Alpine species with peripheral lowland populations are ideal but poorly known model system to address this issue. We investigated genetic diversity and structure of populations of Tofieldia calyculata, species common in central European mountains but highly endangered in lowlands using 17 microsatellite loci. We showed that lowland populations have lower genetic diversity than mountain populations and they are not clearly differentiated from mountain populations. Species probably survived the last glaciation in refugia in margins of Alps and western Carpathians. Some lowland populations are probably relict as well and contain unique genetic information. Their low genetic diversity is likely the result the of reduction of population sizes, gene flow during the Holocene and selfing. However postglacial colonization is also a case of some lowland populations. Based on data from herbarium specimens from extinct lowland populations, we demonstrated that lowland populations had low genetic diversity also in the past and main part of the genetic diversity was lost due to extinction of whole populations. Within population genetic diversity has not changed since the last century suggesting that these populations are able to survive with low levels of genetic diversity under suitable habitat conditions. This idea is also supported by finding of large viable recent populations with very low genetic diversity. We conclude that lowland populations are unique and deserve adequate conservation.


2018 ◽  
Author(s):  
Toni I. Gossmann​ ◽  
Achchuthan Shanmugasundram​ ◽  
Stefan Börno ◽  
Ludovic Duvaux ◽  
Christophe Lemaire​ ◽  
...  

2003 ◽  
Vol 54 (5) ◽  
pp. 429 ◽  
Author(s):  
J. S. Croser ◽  
F. Ahmad ◽  
H. J. Clarke ◽  
K. H. M. Siddique

Efforts to improve the yield and quality of cultivated chickpea (Cicer arietinum L.) are constrained by a low level of intraspecific genetic diversity. Increased genetic diversity can be achieved via the hybridisation of the cultivated species with the unimproved 'wild' relatives from within the 43 species of the Cicer genus. To date, the 8 species sharing an annual growth habit and chromosome number with C. arietinum have been the primary focus of screening and introgression efforts. Screening of these species has uncovered morphological characteristics and resistance to a number of abiotic and biotic stresses that are of potential value to chickpea improvement programs. Detailed analysis of protein and DNA, karyotyping, and crossability studies have begun to elucidate the relationships between the annual Cicer species. In comparison, perennial species have received little attention due to difficulties in collection, propagation, and evaluation. This review discusses the progress towards an understanding of genetic relationships between the Cicer species, and the introgression of genes from the wild Cicer species into the cultivated species.


Weed Science ◽  
2007 ◽  
Vol 55 (2) ◽  
pp. 95-101 ◽  
Author(s):  
Runzhi Li ◽  
Shiwen Wang ◽  
Liusheng Duan ◽  
Zhaohu Li ◽  
Michael J. Christoffers ◽  
...  

Weed genetic diversity is important for understanding the ability of weeds to adapt to different environments and the impact of herbicide selection on weed populations. Genetic diversity within and among six wild oat populations in China varying in herbicide selection pressure and one population in North Dakota were surveyed using 64 polymorphic alleles resulting from 25 microsatellite loci. Mean Nei's gene diversity (h) for six wild oat populations from China was between 0.17 and 0.21, and total diversity (HT) was 0.23. A greater proportion of this diversity, however, was within (Hs= 0.19) rather than among (Gst= 0.15) populations. For the wild oat population from the United States,h= 0.24 andHT= 0.24 were comparable to the values for the six populations from China. Cluster analysis divided the seven populations into two groups, where one group was the United States population and the other group included the six Chinese populations. The genetic relationships among six populations from China were weakly correlated with their geographic distribution (r= 0.22) using the Mantel test. Minimal difference in gene diversity and small genetic distance (Nei's distance 0.07 or less) among six populations from China are consistent with wide dispersal of wild oat in the 1980s. Our results indicate that the wild oat populations in China are genetically diverse at a level similar to North America, and the genetic diversity of wild oat in the broad spatial scale is not substantially changed by environment, agronomic practices, or herbicide usage.


2011 ◽  
Vol 46 (9) ◽  
pp. 1035-1044 ◽  
Author(s):  
Patrícia Coelho de Souza Leão ◽  
Sérgio Yoshimitsu Motoike

The objective of this work was to analyze the genetic diversity of 47 table grape accessions, from the grapevine germplasm bank of Embrapa Semiárido, using 20 RAPD and seven microsatellite markers. Genetic distances between pairs of accessions were obtained based on Jaccard's similarity index for RAPD data and on the arithmetic complement of the weighted index for microsatellite data. The groups were formed according to the Tocher's cluster analysis and to the unweighted pair‑group method with arithmetic mean (UPGMA). The microsatellite markers were more efficient than the RAPD ones in the identification of genetic relationships. Information on the genetic distance, based on molecular characteristics and coupled with the cultivar agronomic performance, allowed for the recommendation of parents for crossings, in order to obtain superior hybrids in segregating populations for the table grape breeding program of Embrapa Semiárido.


Sign in / Sign up

Export Citation Format

Share Document