Leaf phenological traits of the tree fern Cyathea praecincta (Cyatheaceae) in a Brazilian lowland tropical forest

2018 ◽  
Vol 66 (8) ◽  
pp. 618 ◽  
Author(s):  
Mayara Magna Silva ◽  
Rafael de Paiva Farias ◽  
Lucas Erickson Nascimento da Costa ◽  
Iva Carneiro Leão Barros

Phenological studies are fundamental to our understanding of how the environment can influence plant growth and reproductive processes. Environmental triggers of fern phenology are poorly known. We investigated the leaf phenological traits of the tree fern Cyathea praecincta (Kunze) Domin in a Brazilian lowland tropical forest with a short dry season. We monitored 47 plants over an 18-month period, measuring leaf production, leaf fertility, leaf mortality and the relation of these variables with rainfall and temperature. Data on leaf expansion and lifespan were also presented. Full leaf expansion in C. praecincta took up to 3 months. The production of sterile and fertile leaves showed dissimilar interactions with climate, a common pattern among most tree ferns studied worldwide. Whereas production of sterile leaves of C. praecincta was not influenced by climatic variability, leaf fertility was driven by increasing rainfall. Some fertile plants (30%) produced exclusively fertile leaves and attained full maturity, playing a key role in the maintenance and growth of the population. The estimated leaf lifespan was 17.9±5.89 months. The finding that leaf mortality was driven by decreasing rainfall is in contrast with most tree ferns, which are not influenced by climate. None of the phenological variables was influenced by temperature. We demonstrated that rainfall plays a crucial role on leaf fertility and leaf mortality of C. praecincta in a tropical forest remnant with a short dry season and inversely related rainfall and temperature.

1998 ◽  
Vol 14 (3) ◽  
pp. 309-321 ◽  
Author(s):  
JOHN A. BARONE

New leaf production in seasonal tropical forests may result from changes in water or light availability. In this study, the relationship between leaf flushing, photosynthetically active radiation (PAR) and rainfall was examined for understorey saplings in a moist tropical forest over one year. During the wet season, weeks with greater PAR were correlated with a greater proportion of saplings flushing new leaves during subsequent weeks in nine out of ten species. Rainfall was negatively correlated with subsequent leafing during the wet season for six of ten species. However, during the dry season, rainfall was positively correlated with leafing during the following weeks for six species, but the relationship was much weaker. PAR in the dry season was negatively correlated with flushing in eight species. These results support the hypothesis that under well-watered conditions, light limits leaf production, and peaks in insolation result in greater leaf production.


2021 ◽  
Author(s):  
◽  
Thomas Dawes

<p><b>Epiphytes and other structurally-dependent plants have a spatial ecology and community structure intrinsically linked to that of the host trees in the forest, unlike fully terrestrial plants. Understanding of the ecological implications of this from a theoretical perspective is in its infancy. New Zealand’s south temperate rainforest, whilst not as species rich as tropical forests, hosts one of the richest temperate epiphyte floras. Our understanding of the ecological processes structuring the epiphyte communities of New Zealand forests is however lacking. Here, I present four key studies seeking to add to our knowledge of epiphyte community structure, host specificity and spatial ecology in the New Zealand eco-region.</b></p> <p>First, I tested if seed size determined the likelihood of woody plant species occurring epiphytically on tree ferns (their arboreality) – Chapter 2. Arboreality was negatively related to seed size, with only smaller-seeded species commonly occurring on tree ferns. However, the effect of seed size reduced in later life history stages, as expected. These small-seeded species, most notably Weinmannia racemosa, appear to be utilising an alternative recruitment strategy by establishing epiphytically on the tree fern trunks.</p> <p>Second, on Cyathea dealbata host tree ferns, I tested patterns of species accumulation, metacommunity network structure, and differences in vertical stratification (Chapter 3). Epiphytes and climbers followed a species accumulation model of succession between tree ferns of different sizes and between older and younger portions of the tree fern. The metacommunity network showed patterns of species co-occurrence and nestedness consistent with null expectations. Epiphytes of different habits and different dispersal syndromes show different vertical profiles of occurrence, with bird-dispersed species occurring more often near the top of the tree fern than other taxa.</p> <p>To understand an unusual pattern in epiphyte between-host structuring, I quantified the relationship between epiphytic plant and sooty mould assemblages in New Zealand montane beech forest (Chapter 4). Due to the presence of host specific scale insects, the sooty mould was limited to two of three co-dominant canopy tree species. On these two host species, epiphyte richness was significantly reduced. The host size-richness relationship in these two species was also removed, with species composition significantly altered compared to the mould free host species. My results are consistent with the sooty mould amensally excluding the epiphytes and it can be considered as a part of a keystone species complex (with the host beeches and scale insects). This produces a strong pattern of parallel host specificity otherwise not seen in epiphyte assemblages.</p> <p>Lastly, I compared the differences in spatial niche and host species diversity between three arboreal plants, with divergent ecophysiology, on Lord Howe Island (Chapter 5). These focal species were a dwarf mistletoe, an epiphytic orchid and an epiphytic fern. The mistletoe was restricted to thinner branches, and had a significantly different niche to both epiphyte taxa. The host diversity of the mistletoe and orchid both differed significantly from null model expectations. However, the epiphytic fern (Platycerium bifurcatum) had a host diversity consistent with null expectations.</p> <p>Taken together, these studies increase our understanding of epiphyte community assembly in New Zealand and provide a platform to encourage further work in this field. They also provide results that expand understanding of spatial patterns between host and up vertical clines.</p>


Author(s):  
Andrew Ensoll ◽  
Louise Galloway ◽  
Alastair Wardlaw

Ten plants of six species of tree fern were trialled for frost hardiness during the winter of 2005/06 when they were planted outdoors in the ground of an interior courtyard at the Royal Botanic Garden Edinburgh. The species were Culcita macrocarpa, Cyathea dealbata, Cyathea dregei,Cyathea smithii, Dicksonia antarctica and Thyrsopteris elegans. An additional specimen of C. dregei was planted in the main garden. The apex region of each tree fern was fitted with an electric thermometer probe to record weekly minimum and maximum temperatures. These were compared with the air temperatures of the courtyard. For thermal insulation, the trunks and crowns of the three Cyathea species were encased in straw. The prostrate rhizomes of C. macrocarpa and T. elegans were covered respectively with leaf litter, straw and a polystyrene tile. As comparators, three trunked specimens of D. antarctica were given no winter wrapping, since previous experience had shown it to be unnecessary. All ten plants survived the winter of 2005/06 which was colder than average, and put out new growth the following spring. Fronds of D. antarctica and C. macrocarpa stayed green; the fronds of the other species were withered by the coldest exposures when the air temperature reached 4.7°C.Compared with the main botanic garden, the courtyard provided a relatively mild microclimate. It was on average 2.5 °C warmer than the air temperature measured in the screen of the main garden weather station, and 7.7°C warmer than the ‘grass’ temperature in the main garden, which went down to –13°C at its lowest. All tree fern apices registered sub-zero temperatures, the range in different plants being from –0.3 to –3.4°C. The apex regions did not get as cold as the surrounding air temperature, which ranged between 0.5 and 2.3°C. The three D. antarctica (without added insulation) had minimum apical temperatures in the same range as the species that were wrapped for the winter. The insulation effect in the apex regions was also shown by the weekly maximum temperatures, which on average were lower than those of the courtyard air maxima.In conclusion, the combination of the locally favourable microclimate of the courtyard, plus appropriate trunk and crown insulation provided for some species, allowed the planting outdoors, of tree ferns normally grown in Edinburgh under heated glass.


Palaios ◽  
2005 ◽  
Vol 20 (3) ◽  
pp. 249-265 ◽  
Author(s):  
CARLES MARTÍN-CLOSAS ◽  
JEAN GALTIER

Abstract The Late Pennsylvanian Graissessac-Lodève basin is a small, fluvio-palustrine depocenter located in the southern part of the Massif Central (France). A taphonomic and sedimentologic study carried out in this area allows a reconstruction of Late Carboniferous vegetation in an intramontane context. The paleoecology of such limnic settings is poorly known, and this study permits detailed comparison with paralic basins for the first time. The Graissessac peat mires developed in abandoned fluvial channels, in floodplains, and above distal alluvial fans. The vegetation was dominated by monospecific stands of the arborescent lycopsid Sigillaria brardii, whereas the tree fern Psaronius occurred during the later stages of mire accretion. This is in contrast to coeval North American peat mires, which generally were dominated by tree ferns and pteridosperms throughout the mire profile. Stephanian floodplains and distal alluvial fans of the Graissessac-Lodève Basin were devoid of vegetation, with the exception of isolated thickets of sphenopsids that were composed of Calamites and Sphenophyllum. These plants were found growing in situ in the floodplain mudstones as well as in fine-grained sands of secondary channels. Parautochthonous foliage assemblages of ferns and pteridosperms found in floodplain mudstones represent the most diverse plant community. The plants supplying these remains were growing in exposed areas close to floodplains. Large logs attributed to cordaitaleans and monotypic assemblages of large Cordaites leaves were found in fluvial sediments, and suggest that the plants were riparian elements in the basin.


2020 ◽  
Vol 12 (11) ◽  
pp. 1829
Author(s):  
Tatiana Nazarova ◽  
Pascal Martin ◽  
Gregory Giuliani

Forests play major roles in climate regulation, ecosystem services, carbon storage, biodiversity, terrain stabilization, and water retention, as well as in the economy of numerous countries. Nevertheless, deforestation and forest degradation are rampant in many parts of the world. In particular, the Amazonian rainforest faces the constant threats posed by logging, mining, and burning for agricultural expansion. In Brazil, the “Sete de Setembro Indigenous Land”, a protected area located in a lowland tropical forest region at the border between the Mato Grosso and Rondônia states, is subject to illegal deforestation and therefore necessitates effective vegetation monitoring tools. Optical satellite imagery, while extensively used for landcover assessment and monitoring, is vulnerable to high cloud cover percentages, as these can preclude analysis and strongly limit the temporal resolution. We propose a cloud computing-based coupled detection strategy using (i) cloud and cloud shadow/vegetation detection systems with Sentinel-2 data analyzed on the Google Earth Engine with deep neural network classification models, with (ii) a classification error correction and vegetation loss and gain analysis tool that dynamically compares and updates the classification in a time series. The initial results demonstrate that such a detection system can constitute a powerful monitoring tool to assist in the prevention, early warning, and assessment of deforestation and forest degradation in cloudy tropical regions. Owing to the integrated cloud detection system, the temporal resolution is significantly improved. The limitations of the model in its present state include classification issues during the forest fire period, and a lack of distinction between natural vegetation loss and anthropogenic deforestation. Two possible solutions to the latter problem are proposed, namely, the mapping of known agricultural and bare areas and its subsequent removal from the analyzed data, or the inclusion of radar data, which would allow a large amount of finetuning of the detection processes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Emma J. Sayer ◽  
Luis Lopez-Sangil ◽  
John A. Crawford ◽  
Laëtitia M. Bréchet ◽  
Ali J. Birkett ◽  
...  

AbstractSoil organic carbon (SOC) dynamics represent a persisting uncertainty in our understanding of the global carbon cycle. SOC storage is strongly linked to plant inputs via the formation of soil organic matter, but soil geochemistry also plays a critical role. In tropical soils with rapid SOC turnover, the association of organic matter with soil minerals is particularly important for stabilising SOC but projected increases in tropical forest productivity could trigger feedbacks that stimulate the release of stored SOC. Here, we demonstrate limited additional SOC storage after 13–15 years of experimentally doubled aboveground litter inputs in a lowland tropical forest. We combined biological, physical, and chemical methods to characterise SOC along a gradient of bioavailability. After 13 years of monthly litter addition treatments, most of the additional SOC was readily bioavailable and we observed no increase in mineral-associated SOC. Importantly, SOC with weak association to soil minerals declined in response to long-term litter addition, suggesting that increased plant inputs could modify the formation of organo-mineral complexes in tropical soils. Hence, we demonstrate the limited capacity of tropical soils to sequester additional C inputs and provide insights into potential underlying mechanisms.


Sign in / Sign up

Export Citation Format

Share Document