Effects of light availability and rainfall on leaf production in a moist tropical forest in central Panama

1998 ◽  
Vol 14 (3) ◽  
pp. 309-321 ◽  
Author(s):  
JOHN A. BARONE

New leaf production in seasonal tropical forests may result from changes in water or light availability. In this study, the relationship between leaf flushing, photosynthetically active radiation (PAR) and rainfall was examined for understorey saplings in a moist tropical forest over one year. During the wet season, weeks with greater PAR were correlated with a greater proportion of saplings flushing new leaves during subsequent weeks in nine out of ten species. Rainfall was negatively correlated with subsequent leafing during the wet season for six of ten species. However, during the dry season, rainfall was positively correlated with leafing during the following weeks for six species, but the relationship was much weaker. PAR in the dry season was negatively correlated with flushing in eight species. These results support the hypothesis that under well-watered conditions, light limits leaf production, and peaks in insolation result in greater leaf production.

Hoehnea ◽  
2009 ◽  
Vol 36 (3) ◽  
pp. 437-444 ◽  
Author(s):  
Davi Rodrigo Rossatto

Here is a communicating about time differences between branch and diameter growth in a tree community of ten species in Neotropical savanna ("cerrado") of Central Brazil. This work was conducted to study branch expansion and diameter growth in a period of one year between 2006 and 2007. Branch growth had begin in middle dry season and had the peak occurrence during the dry period in September, while diameter growth had begin in late dry season and peaked in the middle of wet season in December. The majority of species followed the same pattern. Branch growth did not have relation with rainfall, while diameter growth had a clear and positive relation with rainfall records. These results suggested that branch growth was not depend on rainfall but only on water status recover, while diameter growth probably depends strongly on water and to carbon assimilation that occurs after branch and leaf expansion.


2021 ◽  
Vol 13 (1) ◽  
pp. 17517-17520
Author(s):  
Naziya Khurshid ◽  
Hidayatullah Tak ◽  
Ruqeya Nazir ◽  
Kulsum Ahmad Bhat ◽  
Muniza Manzoor

A one-year study conducted to ascertain the prevalence and risk factors associated with helminth infection in Hangul Deer Cervus hanglu hanglu at Dachigam National Park revealed that 40.45% (89 of 220 samples) were infected with four helminth species including Heamonchus contortus, Trichuris ovis, Dictyocaulus viviparus, and Moneizia expansa.  The study signified that the infection was more prevalent during the dry season (summer and autumn) as compared to the wet season (winter and spring).  The overall prevalence of Heamonchus contortus was the highest (23.18%) followed by Trichuris ovis (8.18%), followed by Dictyocaulus viviparus (5.45%), and Moneizia expansa (3.63%).  The present study should be of importance in conserving the erstwhile state animal, listed as Critically Engendered in 2017 by IUCN.


1986 ◽  
Vol 2 (4) ◽  
pp. 327-347 ◽  
Author(s):  
C. P. Van Schaik

ABSTRACTPhenological observations were made in a Sumatran rain forest during three years (1980–1982). Phenological changes followed a consistent seasonal pattern. The abundance of young leaves and the fall of leaf litter peaked between December and February (first dry season); flowers were most abundant between January and April (first dry and first wet sea son), and ripe fruits in July-August (the second dry season). The fruit of strangling fig trees showed peaks in April and October, both wet season months. Within the study area there was variation in both the phase and the amplitude of the phenological cycles. One year, 1981, displayed mast flowering and fruiting. The observations indicate that the conditions for production were better during the mast year, a finding that facilitates our understanding of the evolution of mast fruiting.


2001 ◽  
Vol 17 (1) ◽  
pp. 127-148 ◽  
Author(s):  
ROBERT J. MARQUIS ◽  
IVONE R. DINIZ ◽  
HELENA C. MORAIS

Patterns of insect herbivore and leaf pathogen attack are described for 25 plant species (10 trees, 10 shrubs and five herbs) at a Brazilian savanna (cerrado) site. Plant and leaf traits were correlated with interspecific variation in attack by herbivores and pathogens in order to account for differences among plant species. Across all species, pathogen damage was 1.5 times higher than insect damage (17.3% vs. 6.8%, respectively). Most insect damage occurred to young leaves while they were expanding (end of the dry season). In contrast, pathogen attack was low on young expanding leaves at the end of the dry season, increased as those leaves matured in the wet season, but continued to increase through the next dry season. Protein-binding capacity was negatively associated with interspecific differences in insect damage to mature leaves. Protein availability and plant height were positive predictors of pathogen attack among plant species, while leaf expansion rate was a significant negative predictor. Interspecific differences in leaf phenology had little effect on the amount of damage caused by either insects or pathogens. However, new leaves produced during the wet season suffered less insect damage than leaves produced during the dry season, the time of greatest leaf production. Timing of young leaf production affected pathogen attack but the season of escape depended on plant species. In contrast, there was no evidence for escape in space as common species were less likely to suffer high pathogen attack than rare species. New and mature leaf toughness, and time for a leaf to reach full expansion all increased from herbs to shrub to trees, while mature leaf nitrogen decreased in that order.


2010 ◽  
Vol 70 (1) ◽  
pp. 19-24 ◽  
Author(s):  
JP. Lemos-Filho ◽  
CFA. Barros ◽  
GPM. Dantas ◽  
LG. Dias ◽  
RS. Mendes

Canopy cover has significant effects on the understory environment, including upon light availability for seedling growth. The aim of the present study was to verify spatial heterogeneity and seasonal changes in the canopy cover of a dense Cerrado area, and their relationship to understory photosynthetic active radiation availability. Leaf area index (LAI) values in the rainy season varied from 0.9 to 4.83, with 40% of the values ranging from 4.0 to 5.0, while in the dry season LAI varied from 0.74 to 3.3, with 53% of the values oscilating from 2.0 to 3.0. Understory light (Qi ) and the Lambert-Beer ratio (Qi/Qo) were taken around noon on sunny days (between 11:00 AM and 1:00 PM). They were also statistically different (p < 0.01) between the dry and wet seasons, with 72% of sampled points in the rainy season presenting photosynthetic photon flux density (PPFD) values lower than 250 μmol.m-2/s around noon, whereas in the dry season, most PPFD values varied from 1500 to 1817 μmol.m-2/s , thus providing high light availability for understory plants. In most of the studied sites, understory plants did not even receive enough light for 50% of their photosynthetic capacity in the wet season. In contrast during the dry season, Qi/Qo values of 0.8 to 1.0 were observed in more than 50% of the points, thereby allowing for photosynthetic light saturation. Thus, light variability around noon was higher during the dry season than in the wet season, its heterogeneity being related to spatial complexity in the canopy cover.


2020 ◽  
Author(s):  
María F. Barberena-Arias ◽  
Elvira Cuevas

Plant diversity is a key factor influencing belowground dynamics including microclimate and decomposer arthropod communities. This study addresses the effect of individual plant species on belowground arthropods by focusing on seasonal variations in precipitation, temperature and arthropods along the vertical organic matter profile. In the Guanica Dry Forest, Puerto Rico, microclimate was described and 5 plant species and 10 trees/species were selected. Under each tree, for one year, temperature was measured and samples collected along the organic matter fractions. Collected arthropods were standardized to ind/m2, identified to Order/Family and assigned to morphotypes. The annual temperature pattern was similar for all species and OM fractions. Arthropod abundance was similar among plant species and higher in humus than in litter fractions. Richness and species composition were different among plant species and OM fractions. All plant species and OM fractions showed low arthropod abundance and richness, and similar arthropod species composition in the dry season, while in the wet season abundance and richness were higher and species composition varied across plant species and OM fractions. These data suggest that arthropods form specific assemblages under plant species and stages of decomposition that, during the dry season, represent a subgroup adapted to extreme environmental conditions.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9636
Author(s):  
Irving Saenz-Pedroza ◽  
Richard Feldman ◽  
Casandra Reyes-García ◽  
Jorge A. Meave ◽  
Luz Maria Calvo-Irabien ◽  
...  

Tropical forests are globally important for biodiversity conservation and climate change mitigation but are being converted to other land uses. Conversion of seasonally dry tropical forests (SDTF) is particularly high while their protection is low. Secondary succession allows forests to recover their structure, diversity and composition after conversion and subsequent abandonment and is influenced by demographic rates of the constituent species. However, how these rates vary between seasons for different plant sizes at different successional stages in SDTF is not known. The effect of seasonal drought may be more severe early in succession, when temperature and radiation are high, while competition and density-dependent processes may be more important at later stages, when vegetation is tall and dense. Besides, the effects of seasonality and successional stage may vary with plant size. Large plants can better compete with small plants for limiting resources and may also have a greater capacity to withstand stress. We asked how size-dependent density, species density, recruitment and mortality varied between seasons and successional stages in a SDTF. We monitored a chronosequence in Yucatan, Mexico, over six years in three 0.1 ha plots in each of three successional stages: early (3–5 years-old), intermediate (18–20 years-old) and advanced (>50 years-old). Recruitment, mortality and species gain and loss rates were calculated from wet and dry season censuses separately for large (diameter > 5 cm) and small (1–5 cm in diameter) plants. We used linear mixed-effects models to assess the effects of successional stage, seasonality and their changes through time on demographic rates and on plant and species density. Seasonality affected demographic rates and density of large plants, which exhibited high wet-season recruitment and species gain rates at the early stage and high wet-season mortality at the intermediate stage, resulting in an increase in plant and species density early in succession followed by a subsequent stabilization. Small plant density decreased steadily after only 5 years of land abandonment, whereas species density increased with successional stage. A decline in species dominance may be responsible for these contrasting patterns. Seasonality, successional stage and their changes through time had a stronger influence on large plants, likely because of large among-plot variation of small plants. Notwithstanding the short duration of our study, our results suggest that climate-change driven decreases in rainy season precipitation may have an influence on successional dynamics in our study forest as strong as, or even stronger than, prolonged or severe droughts during the dry season.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Endeshaw Lake

In this paper we access the effects of two atmospheric variables (temperature and relative humidity) on two important pollutants in the atmosphere (Nitrogen oxides (NOx) and carbon monoxide (CO)) by using one year (2016) data of Addis Ababa. Temperature has impact on atmospheric mixing and cause for the reduction of NOx as temperature increases. There are positive correlation between temperature and CO concentration from January to April with (R2 = 0.69), negative correlation from May to August with (R2 = 0.92) and no correlation for the remaining months. NOx and CO have moderate positive and negative correlation with relative humidity during the months January-April (R2 = 0.294 for NOx and R2 = 0291 for CO) and in the months May-August are R2 = 0.97 and R2 = 0.15 for NOx and CO respectively. But there are no clear correlation between the NOx and CO with relative humidity from September-December. NOx concentrations during wet season was almost about twice that of the dry season, but no such difference was observed in the case of CO. The seasonal average air temperature in wet season is relatively lower than dry season. NOx exhibited positive and CO negative seasonal correlations with relative humidity.


2018 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Yotta Autika ◽  
Aras Mulyadi ◽  
Yusni Ikhwan Siregar

Riau is one of the most vulnerable provinces to forest and land fires in Indonesia. The potency for forest and land fires is inseparable from the presence of peatlands and exacerbated by drought. The purpose of this research is to know the characteristics of meteorological drought using SPI (Standardized Precipitation Index) method and its relation with forest and peatland fire as one of disaster management effort in Riau Province. The data used in this research are monthly rainfall data from meteorology station and rainfall posts of BMKG, hotspot data from NOAA satellite, map of Forest Use Agreement (TGHK), peat land map and land use map. Analysis of drought characteristics was done by calculating monthly SPI-1 then determining the maximum duration, intensity, severity and drought exposure. Determination of the severity of the drought by weighting and suspension method was based on duration and intensity while drought exposure was done by overlaying the map of the severity of the drought with the land use map. Meanwhile, to know the potential of forest and land fires began with the selection of hotspots on peatlands and forest areas every month then created a graph of the relationship of meteorological drought with the number of hotspots. Then, to see the relationship of drought distribution to the distribution of hotspots in dry season (MK) and wet season (MH) of 2015 was done by overlaying cover the drought distribution with hotspot distribution. The result shows that drought characteristic in the most of Riau province has maximum duration around 4-6 months, dry category of intensity, high category of severity with exposure area in paddy field, field, habitation, and plantation. Then, negative SPI Index (dry condition) has potential to increase the number of hotspots otherwise positive SPI index (wet condition) leads to low occurrence of hotspot. The drought distribution in the dry season (July, August, September) of 2015 triggers the number of hotspots during drought conditions, while in wet season (April, November, December) of 2015 are dominated by normal conditions, some areas are dry and wet, resulting in lower hotspots distribution compared to the dry season.


2017 ◽  
Vol 14 (9) ◽  
pp. 2267-2281 ◽  
Author(s):  
Robert C. Upstill-Goddard ◽  
Matthew E. Salter ◽  
Paul J. Mann ◽  
Jonathan Barnes ◽  
John Poulsen ◽  
...  

Abstract. We discuss concentrations of dissolved CH4, N2O, O2, NO3− and NH4+, and emission fluxes of CH4 and N2O for river sites in the western Congo Basin, Republic of Congo (ROC). Savannah, swamp forest and tropical forest samples were collected from the Congo main stem and seven of its tributaries during November 2010 (41 samples; wet season) and August 2011 (25 samples; dry season; CH4 and N2O only). Dissolved inorganic nitrogen (DIN: NH4++ NO3−; wet season) was dominated by NO3− (63 ± 19 % of DIN). Total DIN concentrations (1.5–45.3 µmol L−1) were consistent with the near absence of agricultural, domestic and industrial sources for all three land types. Dissolved O2 (wet season) was mostly undersaturated in swamp forest (36 ± 29 %) and tropical forest (77 ± 36 %) rivers but predominantly supersaturated in savannah rivers (100 ± 17 %). The dissolved concentrations of CH4 and N2O were within the range of values reported earlier for sub-Saharan African rivers. Dissolved CH4 was found to be supersaturated (11.2–9553 nmol L−1; 440–354 444 %), whereas N2O ranged from strong undersaturation to supersaturation (3.2–20.6 nmol L−1; 47–205 %). Evidently, rivers of the ROC are persistent local sources of CH4 and can be minor sources or sinks for N2O. During the dry season the mean and range of CH4 and N2O concentrations were quite similar for the three land types. Wet and dry season mean concentrations and ranges were not significant for N2O for any land type or for CH4 in savannah rivers. The latter observation is consistent with seasonal buffering of river discharge by an underlying sandstone aquifer. Significantly higher wet season CH4 concentrations in swamp and forest rivers suggest that CH4 can be derived from floating macrophytes during flooding and/or enhanced methanogenesis in adjacent flooded soils. Swamp rivers also exhibited both low (47 %) and high (205 %) N2O saturation but wet season values were overall significantly lower than in either tropical forest or savannah rivers, which were always supersaturated (103–266 %) and for which the overall means and ranges of N2O were not significantly different. In swamp and forest rivers O2 saturation co-varied inversely with CH4 saturation (log %) and positively with % N2O. A significant positive correlation between N2O and O2 saturation in swamp rivers was coincident with strong N2O and O2 undersaturation, indicating N2O consumption during denitrification in the sediments. In savannah rivers persistent N2O supersaturation and a negative correlation between N2O and O2 suggest N2O production mainly by nitrification. This is consistent with a stronger correlation between N2O and NH4+ than between N2O and NO3−. Our ranges of values for CH4 and N2O emission fluxes (33–48 705 µmol CH4 m−2 d−1; 1–67 µmol N2O m−2 d−1) are within the ranges previously estimated for sub-Saharan African rivers but they include uncertainties deriving from our use of basin-wide values for CH4 and N2O gas transfer velocities. Even so, because we did not account for any contribution from ebullition, which is quite likely for CH4 (at least 20 %), we consider our emission fluxes for CH4 to be conservative.


Sign in / Sign up

Export Citation Format

Share Document