Responses of young plants of Vachellia farnesiana to drought

2020 ◽  
Vol 68 (8) ◽  
pp. 587 ◽  
Author(s):  
Josiane Moura ◽  
Evandro A. Vieira

Water availability in soil modulates plant acclimatisation responses in different habitats. In this study, we evaluated the effect of water deficit on the physiological, biochemical and growth responses of Vachellia farnesiana. Open environment experiment was conducted during 90 days and two conditions of hydration were tested: full hydration (H) and water deficit (WD) at 25% of field capacity. The relative water content (RWC) of the leaves under WD showed a 30.2% decrease (P < 0.01), compared with the hydrated plants at 30 days. A decrease in the RWC led to decrease in the osmotic potential (Ψs), quantum yield of PSII (Fv/Fm) and lesser content of chlorophylls a and b under WD. A greater carotenoid content and simultaneous increase in the content of proline, H2O2 and phenolic compounds of the leaves was also observed in WD. Water deficit also promoted differences in the nitrogen, phosphorus, and potassium content of the leaves when compared with hydrated plants. Although they showed growth deficit, plants of V. farnesiana demonstrated resistance to WD through physiological and biochemical adjustments.

Botany ◽  
2012 ◽  
Vol 90 (2) ◽  
pp. 79-91 ◽  
Author(s):  
Nasreddine Yousfi ◽  
Ines Slama ◽  
Chedly Abdelly

The aims of this study were to investigate the effect of prolonged water stress and recovery on phenology, growth, and seed yield in Tunisian contrasting populations of Medicago truncatula and Medicago laciniata . After ample irrigation for 24 days, the plants of each population were divided into two lots: the first lot was irrigated at 100% field capacity (FC), and the second at only 45% FC. After 24 days of treatment, one lot of dehydrated plants was rewatered at 100% FC, while the other was maintained at 45% FC. Interspecific and intraspecific differences were found in phenological responses to water deficit. All growth parameters were more reduced in M. truncatula populations than in M. laciniata populations. The water shortage tolerance of M. laciniata populations was associated with a lower metabolic impairment of photosynthesis and maintenance of relatively higher leaf relative water content. Seed yield was also more reduced in M. truncatula populations compared with M. laciniata populations. In M. laciniata, seed mass was a compensation mechanism to sustain seed yield under drought conditions. Seed yield variation between populations under water deficit was explained mainly by variation in seed number per plant.


2018 ◽  
Vol 45 (6) ◽  
pp. 620 ◽  
Author(s):  
Maria E. Abreu ◽  
Victória Carvalho ◽  
Helenice Mercier

Guzmania monostachia (L.) Rusby ex Mez is an epiphytic, rosette-shaped bromeliad that displays variable degrees of crassulacean acid metabolism (CAM) along the leaf under water deficit. The aim of our study was to evaluate whether the production-scavenging system of reactive oxygen species (ROS) along the leaf length of G. monostachia plants is related to the foliar gradient of CAM when irrigation is withheld. Among the leaf portions, the apex was exposed to the highest photosynthetic flux density and presented the highest relative water content, CAM activity, hydrogen peroxide and lipid peroxidation after treatment. Hence, the most intense CAM at the leaf apex may not have prevented higher oxidative burden in that region during water deficiency. However, the photosynthetic efficiency in the apex seemed unaffected by irrigation withholding or light intensity. The leaf apex also had the highest carotenoid content and increased superoxide dismutase and ascorbate peroxidase activities under treatment. Hence, G. monostachia was able to maintain ROS under tolerable levels by increasing antioxidant capacity. Our results suggest the metabolic differences within the same leaf under water deficit may derive from the gradient of light incidence, which emphasises the physiological plasticity this bromeliad applies to adapt to the adverse conditions of the canopy.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Alemayehu Tefera ◽  
Mulugeta Kebede ◽  
Kassu Tadesse ◽  
Tsegaye Getahun

Wheat is one of the most important cereal crops and extensively cultivated in wide ranges of altitudes in Ethiopia. With an alarming population growth in the era of climatic change, there is a need for further crop improvement for sustainable production. In this regard, the study was carried out at the Kulumsa Agricultural Research Center (KARC) in a rainout shelter to investigate the responses of durum and bread wheat varieties to soil water stress in terms of selected morphological, physiological, and biochemical parameters. The 2 factors were combined factorially and arranged in a randomized complete block design with 3 replications. The 12 wheat varieties, 6 bread wheat and other 6 durum wheat, were sown in pots under well-watered (100% field capacity) and water-stressed (30% field capacity) conditions. Results revealed that water stress resulted in 26%, 9%, 23%, 16%, and 11% reductions in plant height, spike length, number of spikelets spike−1, relative water, and chlorophyll contents, respectively. The tested wheat varieties under water stress produced 28% and 6% more proline content and total soluble sugar, respectively, as mitigation strategies against drought. Results further exhibited that wheat varieties significantly differed in all of the measured traits except for the plant height and relative water content. The present study verified that the biochemical parameters needs to be considered as better traits to select wheat (Triticum spp.) varieties for drought tolerance under water stress conditions.


Author(s):  
Cherki Ghoulam ◽  
Ahmed Khadraji

The effects of drought on growth, several physiological and biochemical processes in six winter varieties (Zhour, Rizki, Douyet, V46, V34 and P37) of chickpea (Cicer arietinum L.) and two rhizobial strains (MC07 and MC10) were studied. The experiment was conducted under greenhouse conditions. Seedlings were grown under three regimes moistening and inoculated separately: 100 % of field capacity (control), 80% of field capacity (optimal irrigation) and 40% of field capacity (water deficit). The results showed that the hydric deficit had significantly perturbed the dry biomass, proline activity, total chlorophyll and nitrogen contents. Moreover, this constraint negatively affected the water deficit saturation (WDS), the membrane permeability and the stomatal conductance of leaves. Under drought, the varieties Zhour and Rizki showed a better water efficiency that was translated by high level in proline accumulation, membrane stability, total chlorophyll and nitrogen contents. These parameters were maintained at the adequate levels with the rhizobial strain MC07 which showed a tolerance in the drought condition. On the contrary, the symbiotic combination least powerful according to the studied parameters is formed by the variety P37-MC10.


Author(s):  
M. Jincy ◽  
V. Babu Rajendra Prasad ◽  
A. Senthil ◽  
P. Jeyakumar ◽  
N. Manivannan

Background: Drought and high temperature stress limits the crop production. Development of drought and high temperature tolerant cultivars that can withstand and yield better under adverse conditions is very much important to ensure the food and nutritional security. Green gram is one of the important pulse crops with high nutritional and economic value. Among the various stages of plant growth and development, reproductive stage is highly sensitive to drought and high temperature stress across all species. The main objective of this study was to evaluate green gram germplasm collection and identification of elite greengram genotypes that can withstand drought and high temperature stresses at reproductive stage. Methods: The experiment was conducted during March-April, 2019, at National Pulses Research Centre, Vamban, Pudukottai district, Tamil Nadu. To study the influence of combined drought and high temperature stress during reproductive stage, the green gram genotypes were sown in pots. Six pots were maintained for each genotype of which three were maintained at 100% field capacity (control) and for another three; drought stress (50% field capacity for 5 days) was imposed combined with high temperature stress (36 ± 2°C) during reproductive phase (35 Days after sowing). At the end of stress period, physiological and biochemical analysis were carried out to identify the tolerant green gram genotypes against drought and high temperature stresses.Result: In the present study, drought and high temperature stress has negative impact on green gram physiology. Among the genotypes screened for their tolerance at reproductive stage, the following green gram genotypes viz., TARM 1, VGG 15029, VGG 17003, VGG 17004, VGG 17006, VGG 17010 and VGG 17019 were found to withstand drought and high temperature stress and maintain high total chlorophyll content, relative water content and chlorophyll stability index. These green gram gramplasm can be used in pulse breeding program to evolve resilient green gram varieties. Screening of 29 green gram genotypes for drought and high temperature stress during reproductive stage were carried out by maintaining the drought stress (50% field capacity for 5 days) combined with high temperature stress (36 ± 2°C) during reproductive stage (35 days after sowing) by pot culture experiment. Total chlorophyll, relative water content, chlorophyll stability index (CSI), oxidants and antioxidant activity were quantified to identify the tolerant green gram genotypes against drought and high temperature stresses. Based on physiological and biochemical parameters, the following green gram genotypes viz., TARM 1, VGG 15029, VGG 17003, VGG 17004, VGG 17006, VGG 17010 and VGG 17019 were found to withstand and tolerate combined drought and high temperature stresses at flowering stage.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2236
Author(s):  
Flávia Maria Alves ◽  
Madhumita Joshi ◽  
Desire Djidonou ◽  
Vijay Joshi ◽  
Carlos Nick Gomes ◽  
...  

Grafting using suitable rootstocks mitigates the adverse effects caused by environmental stresses such as water deficit in the tomato crop. Solanum pennellii and Solanum peruvianum, the wild relatives of tomato, are used as rootstocks due to their tolerance to water deficit and soil-borne diseases. This study focused on evaluating physiological and biochemical responses of tomato plants grafted onto S. pennellii and S. peruvianum rootstocks during water deficit. The commercial tomato cultivar ‘HM 1823′ (HM) either self-grafted (HM/HM) or grafted onto S. pennellii (HM/PN), S. peruvianum (HM/PR), and ‘Multifort’ (HM/MU) rootstocks were subjected to water-deficit stress by withholding irrigation for eight days. The performance of the grafted plants under water deficit was evaluated using physiological and biochemical parameters in vegetative tissues of the grafted plants. Plants grafted using S. pennellii (PN) and S. peruvianum (PR) rootstocks showed higher values of water potential (Ѱw), relative water content (RWC), net photosynthetic rate (A), and leaf water use efficiencies (WUE) compared to HM, HM/HM, and HM/MU. Plants grafted onto tomato wild relatives showed the lowest malondialdehyde (MDA) and proline content. This study demonstrated that the rootstocks of wild tomato relatives reduced the effect of water deficit to a greater extent through better physiological, metabolic, and biochemical adjustments than self-grafting plants.


2018 ◽  
Vol 10 (10) ◽  
pp. 287
Author(s):  
Romeu da Silva Leite ◽  
Marilza Neves do Nascimento ◽  
Tamara Torres Tanan ◽  
Cristiane Amaral da Silva Ramos ◽  
Lourival Palmeira Gonçalves Neto ◽  
...  

It’s known that drought affects crop growth, however, little is known about the physiological responses developed under these conditions by underexploited species, such as Physalis angulata. This study aimed at assessing the physiological responses of Physalis angulata plants after 40 days under different water availability (100%, 80%, 60%, 40% and 20% of pot field capacity). In this research, the effects of the water deficit on the relative water content, water potential, gas exchange, sugars accumulation and activity of nitrate reductase were evaluated. Water relations were affected mainly in plants under severe water deficit, however, the variables remained stable when cultivated at sub-optimal levels of field capacity. Gas exchanges were also affected by water deficit, with reduction in carbon assimilation, internal carbon, stomatal conductance and transpiration, as well as increased leaf temperature and water use efficiency. Plants accumulated sugars as a mechanism of tolerance to severe water deficit, while nitrate reductase activity was reduced. P. angulata plants develop important strategies to tolerate water deficit, contributing to the establishment of crops under low water availability.


2015 ◽  
Vol 28 (2) ◽  
pp. 09-16
Author(s):  
S. A. Raffi ◽  
M. Asaduzzaman

Drought stress is now become the most important abiotic stress for wheat in Bangladesh. Rabi season often compromised wheat production by imposing drought stress. Therefore, it has been a priority to develop drought tolerant wheat variety for Bangladesh. However, the lack of genetic variability for drought tolerance in wheat has been a major bottleneck for developing drought tolerance wheat variety. The present investigation was carried out in an aim to evaluate several exotic and locally cultivated wheat genotypes for drought tolerance based on morpho-physiological and biochemical traits. Experiment was carried out at the net house of Field Laboratory of Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh with seven replications in a RCBD design. Ten locally cultivated and exotic wheat genotypes were grown under control (100% field capacity) and drought (30% field capacity) conditions. Genotypes used in the study were identified with different types of drought tolerance mechanisms, viz., Berkut for earliness, Shatabdi for grain weight, BARI Gom 26 for spike and grain number, along with Vorobey, Berkut for enhanced biosynthesis of proline, Sokoll for undamaged leaf Chlorophyll content and relative water content, Sakha8, Gaurav, Sonalika and Shatabdi for membrane thermostability; Sakha8 and Sourav for improved stress tolerance index. The genotypes screened out with different traits related to drought tolerance can be utilized as gene source for future breeding programs.


2016 ◽  
Vol 12 (2) ◽  
Author(s):  
Elizamar Ciríaco Da Silva ◽  
Tiago Buarque Prado ◽  
Rebeca Nogueira De Alcântara ◽  
Carlos Dias Da Silva Junior ◽  
Luis Carlos Nogueira

The tree Hancornia speciosa Gomes is commonly known in Brazil as “mangabeira”, the fruit of which has high nutritional value. The knowledge about its physiology is still scarce, mainly during the initial phase of development. Thus, the aim of the present study was to evaluate the effects of different water deficit levels on growth pattern, chlorophyll fluorescence and water relations in H.speciosa seedlings. A A factorial experimental design (water treatment x evaluation time) was used with four water treatments based on the field capacity (FC) (80%, 60%, 40% and 20%) with five replications. Plant height, number of leaves, stem diameter, dry biomass production and partitioning, quantum efficiency of photosystem II (PSII), water potential (Ψw), relative water content (RWC), carbohydrates, proteins and proline content were analyzed. Severe water stress (20% FC) led to a reduction in growth and altered the biomass partitioning pattern in the seedlings. However, water relations were not significantly affected, as the seedlings maintain high Ψw and RWC without significant increase in organic solutes content when cultivated in 20% FC. Moreover, the quantum efficiency of PSII was unaffected by the different water levels, suggesting a lack of photoinhibition due to water stress. The change in growth pattern, with an increase in root depth and reduction in shoot emission, seems to be the main strategy of the H. speciosa seedlings for the maintenance of tissue hydration throughout periods of water deficit.


2018 ◽  
Vol 5 (03) ◽  
Author(s):  
ARADHNA KUMARI ◽  
IM KHAN ◽  
ANIL KUMAR SINGH ◽  
SANTOSH KUMAR SINGH

Poplar clone Kranti was selected to assess the morphological, physiological and biochemical responses under drought at different levels of water stress, as it is a common clone used to be grown in Uttarakhand for making paper and plywood. The cuttings of Populus deltoides L. (clone Kranti) were exposed to four different watering regimes (100, 75, 50 and 25% of the field capacity) and changes in physiological and biochemical parameters related with drought tolerance were recorded. Alterations in physiological (i.e. decrease in relative water content) and biochemical parameters (i.e. increase in proline and soluble sugar content and build-up of malondialdehyde by-products) occurred in all the three levels of water stress, although drought represented the major determinant. Drought treatments (75%, 50% and 25% FC) decreased plant height, radial stem diameter, harvest index, total biomass content and RWC in all the three watering regimes compared to control (100% FC). Biochemical parameters like proline, soluble sugar and MDA content increased with severity and duration of stress, which helped plants to survive under severe stress. It was analyzed that for better wood yield poplar seedlings should avail either optimum amount of water (amount nearly equal to field capacity of soil) or maximum withdrawal up to 75% of field capacity up to seedling establishment period (60 days). Furthermore, this study manifested that acclimation to drought stress is related with the rapidity, severity, and duration of the drought event of the poplar species.


Sign in / Sign up

Export Citation Format

Share Document