scholarly journals A Quantitative-Analysis of Dark Respiration and Carbon Content as Factors in the Growth-Response of Plants to Elevated CO2

1992 ◽  
Vol 40 (5) ◽  
pp. 501 ◽  
Author(s):  
H Poorter ◽  
RM Gifford ◽  
PE Kriedemann ◽  
SC Wong

An analysis of elevated CO2 effects (2-4 times ambient) on dark respiration rate and carbon content was undertaken for a wide range of plant species, using both published reports and new data. On average, leaf respiration per unit leaf area was slightly higher for plants grown at high CO2 (16%), whereas a small decrease was found when respiration was expressed on a leaf weight basis (14%). For the few data on root respiration, no significant change due to high CO2 could be detected. Carbon content of leaves and stem showed a small increase (1.2 and 1.7% respectively), whereas C-content of roots was not significantly affected. In both data sets direction of responses was variable. A sensitivity analysis of carbon budgets under elevated CO2 identified changes in respiration rate, and to a lesser extent carbon content, as important factors affecting the growth response to elevated CO2 in quite a number of cases. Any comprehensive analysis of growth responses to increased CO2 should therefore include measurements of these two variables.

1994 ◽  
Vol 21 (3) ◽  
pp. 273 ◽  
Author(s):  
WJS Downton ◽  
WJR Grant

Variegated and completely green cultivars of oleander (Nerium oleander L.) and willow myrtle (Agonis flexuosa (Willd.) Sweet) were grown in controlled environment cabinets for 3 and 5 months, respectively, under either ambient levels of CO2 or with supplementary CO2 to a partial pressure of 800 μbar. Photosynthesis of entirely green leaves and the green portions of variegated leaves on both species was greatly stimulated by high CO2 and there was no evidence of downward adjustment (acclimation) of photosynthetic rates to high CO2 during the experiment. Dark respiration rates of these leaves were lowered by high CO2. The yellow portions of willow myrtle leaves showed a low level of photosynthetic activity which was stimulated by high CO2; however, dark respiration rates showed little response to elevated CO2. Green and yellow areas on variegated leaves of willow myrtle had much lower dark respiration rates than completely green leaves, but this difference was not evident for oleander. Yellow portions of oleander leaves showed little evidence of photosynthetic capacity. This was also confirmed by a low photochemical efficiency as determined by chlorophyll fluorescence. A major effect of variegation was to slow overall plant growth compared with completely green plants. The respective 3-fold and 6-7-fold differences in biomass between fully green and variegated cultivars of oleander and willow myrtle was closely related to estimated net carbon gain per day by the plant canopy. Variegation for both species averaged close to 50:50, green:yellow areas. Variegated plants developed about twice the leaf area ratio and specific leaf area compared with their completely green counterparts. The relative growth response to high CO2 was significantly greater for the variegated plants compared to the completely green plants.


1998 ◽  
Vol 1998 ◽  
pp. 141-141
Author(s):  
M H Davies ◽  
D W Deakin

It is important that venison competes with other red meats in efficiency and cost of production. The growth responses of farmed red deer during the first 15-18 months of life have been well defined under a wide range of feeding and daylength regimes (Davies, 1995). However there is a need to examine less intensive systems of production which aim to maximise growth from grazed grass, following various growth-restriction feeding regimes during winter. The objective of this experiment was to quantify the growth response in 16-24 month old hinds fed two contrasting feeding regimes during their second winter, followed by a period at pasture.


1998 ◽  
Vol 25 (3) ◽  
pp. 287 ◽  
Author(s):  
Saman P. Seneweera ◽  
Oula Ghannoum ◽  
Jann Conroy

The hypothesis that shoot growth responses of C4 grasses to elevated CO2 are dependent on shoot water relations was tested using a C4 grass, Panicum coloratum (NAD-ME subtype). Plants were grown for 35 days at CO2 concentrations of 350 or 1000 µL CO2 L-1. Shoot water relations were altered by growing plants in soil which was brought daily to 65, 80 or 100% field capacity (FC) and by maintaining the vapour pressure deficit (VPD) at 0.9 or 2.1 kPa. At 350 µL CO2 L-1, high VPD and lower soil water content depressed shoot dry mass, which declined in parallel at each VPD with decreasing soil water content. The growth depression at high VPD was associated with increased shoot transpiration, whereas at low soil water, leaf water potential was reduced. Elevated CO2 ameliorated the impact of both stresses by decreasing transpiration rates and raising leaf water potential. Consequently, high CO2 approximately doubled shoot mass and leaf length at a VPD of 2.1 kPa and soil water contents of 65 and 80% FC but had no effect on unstressed plants. Water use efficiency was enhanced by elevated CO2 under conditions of stress but this was primarily due to increases in shoot mass. High CO2 had a greater effect on leaf growth parameters than on stem mass. Elevated CO2 increased specific leaf area and leaf area ratio, the latter at high VPD only. We conclude that high CO2 increases shoot growth of C4 grasses by ameliorating the effects of stress induced by either high VPD or low soil moisture. Since these factors limit growth of field-grown C4 grasses, it is likely that their biomass will be enhanced by rising atmospheric CO2 concentrations.


1998 ◽  
Vol 1998 ◽  
pp. 141-141
Author(s):  
M H Davies ◽  
D W Deakin

It is important that venison competes with other red meats in efficiency and cost of production. The growth responses of farmed red deer during the first 15-18 months of life have been well defined under a wide range of feeding and daylength regimes (Davies, 1995). However there is a need to examine less intensive systems of production which aim to maximise growth from grazed grass, following various growth-restriction feeding regimes during winter. The objective of this experiment was to quantify the growth response in 16-24 month old hinds fed two contrasting feeding regimes during their second winter, followed by a period at pasture.


Weed Science ◽  
1987 ◽  
Vol 35 (2) ◽  
pp. 141-144 ◽  
Author(s):  
G. Rajendrudu ◽  
J. S. Rama Prasad ◽  
V. S. Rama Das

The rates of foliar dark respiration and net photosynthesis in attached leaves of 25 C3, C4, and C3-C4 intermediate dicotyledonous weed species were determined using the infrared gas analyzer. The ratio of dark respiration to photosynthesis per unit leaf area in attached leaves of each species was inversely proportional to leaf age. Highly significant, positive linear correlation was observed between the rates of foliar dark respiration and net photosynthetic CO2 uptake in dicot weeds irrespective of the photosynthetic type. The higher foliar dark respiration rate found in some of the weed species can be attributed in part to the higher carbohydrate levels as generated by a rapid photosynthetic CO2 assimilation. The significance of higher dark respiration rate in relation to carbon and energy economy of weeds is discussed.


1993 ◽  
Vol 20 (3) ◽  
pp. 251 ◽  
Author(s):  
DJ Connor ◽  
AJ Hall ◽  
VO Sadras

Photosynthesis-irradiance response curves and leaf nitrogen contents were measured weekly by destructive sampling over the life cycles of leaves 10, 15, 20 and 25 of sunflower plants (cv. Prosol 35) grown in large pots in the open under optimum conditions of temperature and high irradiance. Individual leaf responses were adequately described by a hyperbola of three parameters, viz. Pmax, the rate of photosynthesis in saturating irradiance; R, the rate of dark respiration adjusted for temperature (30�C); and ε, the apparent quantum efficiency of photosynthesis at low irradiance. Pmax (range 0-40 μmol CO2 m-2 s-1) and R (0-4 μmol CO2 m-2 s-1) were non-linearly related to nitrogen content per unit leaf area (NL) (range 0.3-2.9 g N m-2) across all leaf positions and for all leaf ages. ε (mean value 0.050 mol mol-1, s.e. 0.001) was independent of NL. The equations for net photosynthesis derived from pot studies were shown to explain (r2 =0.80) leaf photosynthesis in a crop of the same cultivar over a wide range of NL and irradiance.


1994 ◽  
Vol 119 (5) ◽  
pp. 903-914 ◽  
Author(s):  
Douglas A. Hopper ◽  
P. Allen Hammer ◽  
James R. Wilson

This paper details the development and verification of ROSESIM, a computer simulation model of the growth of `Royalty' roses (Rosa hybrida L.) based on experimentally observed growth responses from pinch until flowering under 15 combinations of constant photosynthetic photon flux (PPF), day temperature (DT), and night temperature (NT). Selected according to a rotatable central composite design, these treatment combinations represent commercial greenhouse conditions during the winter and spring in the midwestern United States; each selected condition was maintained in an environmental growth chamber having 12-hour photoperiods. ROSESIM incorporates regression models of four flower development characteristics (days from pinch to visible bud, first color, sepal reflex, and flowering) that are full quadratic polynomials in PPF, DT, and NT. ROSESIM also incorporates mathematical models of nine plant growth characteristics (stem length and the following fresh and dry weights: stem, leaf, flower, and total) based on data recorded every 10 days and at flowering. At each design point, a cubic regression in time (days from pinch) estimated the plant growth characteristics on intermediate days; then difference equations were developed to predict the resulting daily growth increments as third-degree polynomial functions of days from pinch, PPF, DT, and NT. ROSESIM was verified by plotting against time each simulated plant growth characteristic and the associated experimental observations for the eight factorial design points defining the region of interest. Moreover, one-way analysis of variance procedures were applied to the differences between ROSESIM predictions and the corresponding observed means for all 15 treatment combinations. At 20 days from pinch, significant differences (P < 0.05) were observed for all nine plant growth characteristics. At 30 and 40 days from pinch, only flower fresh and dry weights yielded significant differences; at flowering, none of the 13 selected responses yielded significant differences. These graphical and statistical comparisons provide good evidence of ROSESIM's ability to predict the growth response of `Royalty' roses over a wide range of constant environmental conditions.


1973 ◽  
Vol 62 (5) ◽  
pp. 590-617 ◽  
Author(s):  
K. W. Foster ◽  
E. D. Lipson

With the help of an automated tracking system we have studied the characteristics of the transient light growth response of Phycomyces. The response shows a sharply defined latency. The Q10 of the reciprocal latency is 2.4. Response patterns at different peaks of the action spectrum are the same. The gradual variation of response magnitude over a wide range of adapted intensifies parallels that of phototropism. The responses to saturating stimuli exhibit a strong oscillation with a constant period of 1.6 min and variable damping. The growth responses to sinusoidally varying light intensities show a system bandwidth of 2.5 x 10-3 Hz. The linear dependence of phase shift on frequency is largely attributable to the latency observed with pulse stimuli. In the high intensity range a previously suspected increase of the steady-state growth rate with intensity has been confirmed. The light growth responses of mutants selected for diminished phototropism have been investigated. Many of these mutants have sizable but grossly distorted growth responses.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Andrea Y Frommel ◽  
Justin Carless ◽  
Brian P V Hunt ◽  
Colin J Brauner

Abstract Pacific salmon stocks are in decline with climate change named as a contributing factor. The North Pacific coast of British Columbia is characterized by strong temporal and spatial heterogeneity in ocean conditions with upwelling events elevating CO2 levels up to 10-fold those of pre-industrial global averages. Early life stages of pink salmon have been shown to be affected by these CO2 levels, and juveniles naturally migrate through regions of high CO2 during the energetically costly phase of smoltification. To investigate the physiological response of out-migrating wild juvenile pink salmon to these naturally occurring elevated CO2 levels, we captured fish in Georgia Strait, British Columbia and transported them to a marine lab (Hakai Institute, Quadra Island) where fish were exposed to one of three CO2 levels (850, 1500 and 2000 μatm CO2) for 2 weeks. At ½, 1 and 2 weeks of exposure, we measured their weight and length to calculate condition factor (Fulton’s K), as well as haematocrit and plasma [Cl−]. At each of these times, two additional stressors were imposed (hypoxia and temperature) to provide further insight into their physiological condition. Juvenile pink salmon were largely robust to elevated CO2 concentrations up to 2000 μatm CO2, with no mortality or change in condition factor over the 2-week exposure duration. After 1 week of exposure, temperature and hypoxia tolerance were significantly reduced in high CO2, an effect that did not persist to 2 weeks of exposure. Haematocrit was increased by 20% after 2 weeks in the CO2 treatments relative to the initial measurements, while plasma [Cl−] was not significantly different. Taken together, these data indicate that juvenile pink salmon are quite resilient to naturally occurring high CO2 levels during their ocean outmigration.


2021 ◽  
Vol 9 (2) ◽  
pp. 336
Author(s):  
Laura Matarredona ◽  
Mónica Camacho ◽  
Basilio Zafrilla ◽  
Gloria Bravo-Barrales ◽  
Julia Esclapez ◽  
...  

Haloarchaea can survive and thrive under exposure to a wide range of extreme environmental factors, which represents a potential interest to biotechnology. Growth responses to different stressful conditions were examined in the haloarchaeon Haloferax mediterranei R4. It has been demonstrated that this halophilic archaeon is able to grow between 10 and 32.5% (w/v) of sea water, at 32–52 °C, although it is expected to grow in temperatures lower than 32 °C, and between 5.75 and 8.75 of pH. Moreover, it can also grow under high metal concentrations (nickel, lithium, cobalt, arsenic), which are toxic to most living beings, making it a promising candidate for future biotechnological purposes and industrial applications. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis quantified the intracellular ion concentrations of these four metals in Hfx. mediterranei, concluding that this haloarchaeon can accumulate Li+, Co2+, As5+, and Ni2+ within the cell. This paper is the first report on Hfx. mediterranei in which multiple stress conditions have been studied to explore the mechanism of stress resistance. It constitutes the most detailed study in Haloarchaea, and, as a consequence, new biotechnological and industrial applications have emerged.


Sign in / Sign up

Export Citation Format

Share Document